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This report covers Parts I and II of the data resulting from an investigation of structural members sub-
jected to combined axial and transverse loads. It contains the theoretical portion of the development of the
United States Army Air Service formulas and includes tables of functions which greatly facilitate the use of
these formulas. ]

Studies are now being made as to the agreement of the deflections computed by the use of these formulas
with the deflections actually obtained by tests made on experimental struts and trusses, it being considered that
a satisfactory check on the dependability of the formulas can be obtained in this way. When these studies,
which have now been carried far enough to indicate that the formulas are reliable, are completed, Section II of
this report will be issued.

The reason for publishing this report in two sections is to furnish the airplane industry immediately with a
more complete set of data on the development and use of the precise formulas than is now available. This
section is self-contained in that it includes all information necessary to the intelligent use of the precise formulas
in the design of airplane structures. @
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CERTIFICATE: By direction of the Secretary of War the matter contained herein is published as adminis-
trative information and is required for the proper transaction of the public business.




THE INVESTIGATION OF STRUCTURAL MEMBERS UNDER
COMBINED AXIAL AND TRANSVERSE LOADS

PURPOSE OF THE INVESTIGATION

The purpose of the investigation, the results of which
are given in this report, was to obtain a satisfactory
method of computing the stresses in such members of
an airplane structure as are subjected to combined
axial and transverse loads.

SCOPE OF THE INVESTIGATION

The investigation was initiated for the purpose of
making a comparative study of a number of approxi-
mate methods for the design of members under com-
bined loads to ascertain their relative degrees of con-
servatism and ease of application. Several approxi-
mate methods were.studied and applied to a specific
problem for purposes of comparison. A full discussion
of the methods and results obtained will be found in
Part I of this report.

Although several of the approximate formulas were
found to agree quite well among themselves, there were
gsome that gave results which were considerably
different, so it was decided to investigate the precise
formulas developed by Mr. Arthur Berry in his paper,
“The Calculation of Stresses in Aeroplane Wing
Spars,”! and to compare the results thus obtained with
those from the approximate methods. It was found
that considerable discrepancy existed between the
results, the approximate methods being too conserva-
tive in some cases and unsafe in others.

Attention was then directed toward the precise
methods of Berry and of Muller-Breslau? and an
effort was made to simplify them and, if possible, to
reduce the purely mechanical part of the mathematical
work inherent in their use. Part II is devoted to the
development of different forms of the precise formulas
for the different conditions of loading that are en-
countered in airplane structural design. It is entirely
theoretical in its treatment of members under com-
bined loading.

Parts ITI and IV are devoted to tests made on spruce
specimens subjected to combined loads for the purpose
of checking the theory and the formulas developed in
Part II of this report.

. Part III is concerned with simple, pin-ended struts.
Part IV, with continuous members.

The appendix contains tables for use with the for-
mulas developed in Part Il and articles on subjects
closely related to the formulas, their development and
use.

1 Trans. Royal Aeronautical Society, London,’1919.
2 Graphische Statik, Vol. II, part 2.

SUMMARY OF THE RESULTS OF THIS INVES-
TIGATION

The study of the various approximate methods, the
results of which are given in Part I, indicated that the
combination of the ordinary three-moment equation,
which does not provide for an axial load, with the
varions approximate formulas gave results that would
not be dependable on a structure such as an airplane
spar. As a result of this, the precise formulas of Berry
and Muller-Breslau were investigated for the purpose
of reduting the labor involved in their application.
The formulas developed in Part II will be found to be
somewhat less laborious than those of Berry and, with
the use of the special tables of sines, cosines, and
tangents, somewhat easier than Muller-Breslau’s
method. Formulas for loading conditions other than
those given by Berry or Muller-Breslau are also
developed in Part II, so that precise formulas are now
available for all loading conditions liable to occur in
airplane design.

The tests which are described in Part III were
sufficient to establish the theory upon which the
precise methods depend, but since they were made
on small specimens under laboratory conditions they
did not indicate how dependable the precise methods
would be under practical conditions. The tests which
are discussed in Part IV were made on a small truss
similar to the lift truss of an airplane and indicate that
for continuous members under combined load the
precise formulas are more dependable than the approxi-
mate. The precise formulas gave results within 5
per cent of those indicated by the tests where the
ordinary methods were as much as 16 per cent off.

The conclusions obtained from this investigation are
as follows:

The precise formulas of Muller-Breslau and Berry
accurately represent the forces and stresses in members
subjected to combined axial and lateral loads.

The theoretical loading conditions for which these
formulas are developed sre sufficiently close to the
actual conditions that the formulas may be used
safely in practical design.

The precise formulas developed in this investigation
are fundamentally identical with the Muller-Bresiau
and Berry formulas, but are easier to apply in prac-
tical design and cover more conditions of loading,.

In fact, in many cases these precise formulas are
easier to apply than the best approximate formulas.

The approximate formulas studied, and they include
all those in common use, are too inaccurate for general
employment and may give very unsafe results.

(1)
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The approximate formulas may be used in pre-
liminary design and in final design also if the secondary
stresses and slenderness ratio are small and the margin
of safety is large.

The precise formulas must be used in design if the
secondary stresses or slenderness ratio is large or the
margin of safety is small

THE ACTION OF A MEMBER UNDER COMBINED
AXIAL AND TRANSVERSE LOAD

A concise statement of the action of a strut under
combined loads is desirable to clarify the problem
entailed, as well as the methods for its solution which
have been investigated or developed in this report.

b A LEPLECTION UNDEE CONBNED Lol
,’ © OEPLECTION UNOER LATERAL LOND ONLY.

Fia. 1.

Figure 1 shows a beam acted upon by a side load of
w pounds per inch and an axial load of P pounds. Due
to the side load alone the beam deflects a distance y’
at a point z inches from the left support and the bend-
wz? wlz.

272

If a compressive load, P, is applied as shown, the
moment at point z will be increased by — Py, since the
load P acts at a distance y’ from the axis of the deflected
member. This increase in moment causes a greater
deflection at z, which, in turn, causes a further increase
in the moment. If the load P is not great enough to
cause failure, these increments of the moment and
deflection will get smaller and smaller until the strut
comes into equilibrium and the deflection at z becomes
y. If, however, the load P is sufficiently large, the
‘increments of deflection will be successively greater
and greater until the strut fails by buckling.

On the other hand, if P be tension instead of com-
pression the deflection y’ due to the side load alone
will be reduced instead of increased and, as P is
increased, the strut will tend to straighten out and the
moment at any point will be reduced. The failure,
when it occurs, will be a tension failure and will not
be accompanied by buckling of the member.

ing moment at that point is

It is apparent from the above discussion that an
axial compressive load, which increases the bending
moment at every point, is of far greater importance in
the design of members under combined loads than is
an axial tension which tends to decrease the bending.
For this reason the investigation has been confined
almost entirely to the case of a compressive load,
although some attention has been given to axial ten-
sion and methods of providing for it.

It is apparent that the increments to the deflection
or bending moment should be represented by a series
of some sort which, if the axial load is not teo great,
will conveérge, so that the limit of the series may be
taken to represent the condition when the member
comes to rest and is in equilibrium. If the member is
continuous over two or more supports, the moments
will be increased, both at the supports and in the spans,
by the application of the axial load. The ordinary
three-moment equation, which would be used on a
continuous beam in conjunction with the various
approximate methods for computing stresses under
combined loading, makes no provision for the change
in moments over the supports due to the axial load,
and so vitiates the effect of any series or other device
used in the formulas to provide for the effects of the
axial load in the spans. This is an important point,
as it accounts for a large part of the discrepancy be-
tween the approximate and the precise methods when
applied to continuous members, such as the wing spars
of an airplane.

The precise methods provide for the axial load both
in the three-moment equation and in the formulas for
the moment in the spans by the use of mathematical
series. It so happens that the series used are identical
with those of the trigonometric functions, sines, cosines,
and tangents, but it should be borne in mind that they
are not connected with angles in any way. The same
results could be obtained by substituting the series for
the sines or cosines in the formulas, but since the limits
of these series have already been computed and tabu-
lated so that itis far simpler to determine the value of
the sine from a table than to determine the limit of the
series it represents, the terms ‘‘sine’’ and “‘cosine’’ are
used in the precise formulas. Special tables have been
computed for sines, cosines, and tangents for a range of
the variable from 0 to 3.50. If desired, the variable
may be considered to be an angle expressed in radians,
and the sine, cosine, or tangent may be obtained from
any set of trigonometric tables for this angle converted
to degrees and minutes.




PART I—-COMPARISON OF APPROXIMATE METHODS

The six approximate methods investigated and
recorded in this report were studied by applying the
various formulas to one specific spar and loading.
The results are tabulated and compared and will be
found in detail in the following pages.

Figure 2 shows the member on which the computa-
tions were made. It is a section of a wing beam from
the Boeing GA-2 airplane continuous over two spans.
It is subjected to a uniformly distributed transverse
load, axial loads, and a restraining moment at one
end caused by the continuity of the beam and a canti-
lever overhang. The other end is pinned. The
moment at the intermediate support was found by the
ordinary threé¢-moment equation which does not pro-
vide for the effects of an axial load.

7, = 50300

jected to combined axial and: lateral load is that given
on page 520, Volume II, of Johnson, Bryan, and
Turneaure’s “Modern Framed Structures.” For a
beam having hinged ends it is,

MO

P(L')?
£ T0Er
where M, is the maximum moment with no axial load
and L’ is the distance between hinge points. The
negative sign in the denominator is used when the
axial load causes compression, the positive when it
causes tension.

This formula is developed for pin-ended members,
but can be applied to any member by considering the

10

Mmll'=

M+ 33200

7z 24850

—
P 11065

ag«:g‘?a — A//063
Y'Y w-26%pPtR /1CH Wr 26 PER /IICH.

I+ 1439.m*

A 7.9/m3

L-139m* A 29Im?

(198"

(99

PINTERIAL  SPRUCE
MOFE < | 600000%n

Fia. 2

It will be. noted that the lateral load shown in Figure
2 acts upward in accordance with the conventions
used in airplane design. - All of the approximate for-
mulas have been derived for bridge or building struc-
tures in which the loads act downward. This difference
in direction of loading causes considerable difficulty in
the matter of signs and great care is required when
employing the approximate formulas to use the proper
signs.

The formula given in this report will be modified
where necessary to cpnform to the conventions used in
airplane structural design, which are as follows:

Forces are considered positive when acting upwards;
shear, when the algebraic sum of all forces acting on
the beam to the left of the section considered is posi-
tive; bending moments, when they tend to cause com-
pression in the upper fibers of the part of the beam to
the right of the section; the slope of a line, when it
rises from left to right; and deflection, when the
deflected position of a point is above the original
position.

THE FIRST APPROXIMATE METHOD

One of the best known of the approximate formulas
for computing the bending moment in a member sub-

sections beween points of inflection as simple, pin-
ended spans. Where M; and M,, the restraining
moments at the points of support, have been deter-
mined, the distance between the points of inflection
may be found, the axial load being neglected, from

' M;—M\* My+ M, L2
L_2\/( zwL l)_ v tTE

in which w is the lateral load per inch run and L
is the distance between supports. This expression is
applicable to a uniformly distributed load and similar
expressions can be developed for other loading condi-
tions. The value of L’ determined from this equation
is in error, due to the fact that the points of inflection
move somewhat under the action of the axial load,
which is neglected entirely in this expression. The
effect of this error is generally not great, so that the
formula may be used for preliminary analyses, etc.;
but its presence should be noted and borne in mind.

—_— )3
M, may be found from —w—(SL—Z—’ i. e.; the moment

at mid-span on a simple béam under a uniformly
distributed load.

The application of this method to the beam of Figure
2 gives the following results:

3)
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For the 138-inch span the distance between points
of inflection is

L’=2\/(M’_M’ MM L2

» wk w 4

\/(3_3_,200—50,300 ?_33,200+50,300
26X138 26

The maximum moment between points of inflection
will be :

- LI 2 _2 . 2
) Z2OXT92 20,450 in. bs.
M, ‘
M, =~ P(L?
=10 51

2

2
LA

M=

—20,450
— 11,065X (719.2)
10X 1,600,000 % 14.39

Similarly, for the 93-inch bay

. 0-—33,200\2

L *2\/( Zxor ) *

tween points of inflection.
M, _3=—26,200 in. lbs.

—29,300 in. 1bs.

33,200
26

+% =65.4 in. be-

This formula is sometimes given as IW’""»:-__%(O]T)Z
1= pr

M,Q, .
or M"’“'=Q—P where @ is the Euler load for the part
of the spar between the points of inflection. It will

be noted that the difference between this formula and
Johnson's is that - has been substituted for o in

the second term of the denominator. A similar formula
may be derived from the precise equation for the
maximum moment in a pin-ended member under com-
bined load, if the series represented by the sines and
cosines are substituted for the functions themselves.
When the resulting expression is simplified, neglecting
terms containing powers of E and I, it becomes

M,
(5P (L)

A[mll.=

which reduces to Johnson’s formula on substituting
1

0 for 4—% These last two formulas are applicable
only to the case where the axial load is compression.
Of the three formulas, the last is the most conservative,
although the difference between them is slight.

The maximum moments in the spans of a continuous
beam subjected to combined load are somewhat in
error when computed by this method. The greatest
source of error is the fact that the ordinary three-
moment equation does not provide for the effect of
the axial load, so that the computed moments at the
supports are less than they should be. This results
it} the computed moments in the spans being incorrect,
since it affects the location of the points of inflection.
A second source of error is the fact that the points of
inflection move under the influence of the axial load,
an effect which is also neglected in these formulas.

This method is sufficiently accurate for use in pre-
liminary analyses or designs of airplanes, but it should
not be depended upon for the final design of con-
tinuous or restrained members under combined load.
Johnson’s formula, or either of the others, will give
satisfactory results for pin-ended struts having a side
load and it may safely be used for the design of such
members.

THE SECOND APPROXIMATE METHOD

A second well-known formula for the maximum
moment in a pin-ended member under a combined
lateral and axial load is the so-called secant formula,

L [P e e
Muus. =M.+ Py (sec 5 \/E_I) The positive sign is

used wher: the axial load is compressive. This formula
may be applied to continuous members in the same
way that Johnson’s formula was, i. e., by computing
the distance L’ between the points of inflection and

— Y

substituting for L. In this case M°='——i8(L—) for a
— Sw(L)
uniformly distributed lateral load and y= 35);0%1—)

For other conditions of loading the values of M, and %
may be found similarly from the corresponding ex-
pressions for the moment and deflection at the mid-
point of a beam of length L’ under the given loading.

In this formula the primary deflection, y, is multi-
plied by an infinite series, the limit of which is given

by the secant of the quantity, %‘\/ EI; This is done to

obtain the deflection when the strut comes into equilib-
rium under the combined load. This ultimate deflec-
tion is then multiplied by the axial load P fo obtain
the secondary moment and the latter quantity is
added to the primary bending moment to obtain the
total.

This formula is susceptible to the same criticism as
Johnson’s when applied to continuous or restrained
members. It gives satisfactory results when applied
to pin-ended struts with lateral loads, but somewhat
more labor is involved in its use than is required with
Johnson’s formula.

When applied to the spar and loading shown in
Figuré2, M,, P, L', E, and I are the same as before.

For the 138-inch span

—5w (L')* —5X26X(79.2)4

Y="384 B —3841,600,000%14.39 0072
L' [P_792 |/ 11,065
ZTVEI™ 2 V1,600,000 1430 0-87 Sec 087

— 1 F—3 ———_1 -
" cos0.87 0.6448

(See tables in Appendix.)

_ 11,065 (—0.579)
My = — 20,450+ ===

—9,900=230, 350 in. lbs.

20,450

Similarly, for the 93-inch span
My—3=—27,850 in. lbs.
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THE THIRD APPROXIMATE METHOD

A somewhat similar formula was used by the Forest
Products Laboratory in the development of a wing
beam for the Navy type TB flying boat. The formula is

Mouw.=M, + 12P Py where y is the primary deflec-

1__
Q
tion due to the lateral load at the point of maximum
moment and @ is the allowable Euler load on the
section between pin points or between points of inflec-
tion on a continuous or restrained beam. This
formula is applicable to members having an axial
compressive load and it'is open to.the same errors as
are formulas 1 and 2, which depend on the distance
between the points of inflection computed without
providing for the effect of the axial load.

M,, P, y, L', E, and I are the same as the values
used with formula 2, go that, when this formula is
applied to the beam shown in Figure 2, the resultsare:

For the 138-inch span,

=Bl _#%X1,600,000X14.39

Q=Tr= 709y =36,200 Ibs.
1.2 Py_ 1.2 11,065(—0.579)
Mya=M,+=F'=—20,450+ 11,065

Q 736,200
= —20,450—11,050= —31,500 in. lbs.

Similarly, for the 93-inch bay,
M; ;= —28,900 in. lbs.

THE FOURTH APPROXIMATE METHOD

On page 155 of ‘‘ Flugzeugstatik,” Van Gries gives an
approximate formula for determining the maximum
moment in the span of a beam under combined loading.

: . —0.16 wl? .
This formuls is M"‘“'__ﬁ—lm_” where Lisone-

T EI
half the span length. Van Gries derives this from the
so-called exact cosine formula for fixed ended beams.
It is admittedly approximate and is probably none
too reliable. ‘When applied to the beam shown in
Figure 2 this formula gives the following results:
For the 138-inch bay

—0.16X26X 69 _ —19,800

0.16 X 11,065 X6% 0.634
1—7600,000X 14.39
= —31,200 in. 1bs.

For the 93-inch bay
M nax. = — 14,300 in. lbs.

Van Gries questions the dependability of this for-
mula, but it appears to give fairly good results in this
case. The maximum moment in the long bay agrees
quite closely with that obtained by the other approxi-
mate formulas, while that in the shorter spanis in
fairly good agreement with ¢he results of the precise
methods. No provision is made for different degrees
of restraint at the supports of a continuous bearm, since
none of the terms in this formula depend on these
moments or upon the points of inflection computed
from them.

Mo =

If the distances between points of infiection had been
used instead of the total lengths of the bays, the maxi-
mum moments in the spans would have been only
—17,430 in. lbs. in the 138-inch and —5,460 in. lbs. in
the 93-inch bay. These results do not agree with
those obtained by any of the other methods and are
probably much too small.

It is not recommended that this formula be used for
the design of airplane members subjected to combined
loads,. as it is believed that the good results on the
first example above are purely accidental.

THE FIFTH APPROXIMATE METHOD

An approximate method that has been much used in
airplane design is that shown in Chapter III of *Strue-
tural Analysis and Design of Airplanes.” Briefly, this
method consists in assuming that the maximum total
moment occurs at the point of zero shear, computing
the deflection of the point of zero shear due to the
lateral load only, multiplying this deflection by the
axial load, and adding the result to the moment at that
point due to the lateral load alone. This method is
in error for three reasons: It depends on values for the
moments at the supports which are computed without
considering the effect of the axial load; the point of
maximum total moment and the point of maximum
moment due to side load only are assumed to be iden-:
tical; and only the first of the infinite series of second-
ary moments is considered.

Applying this method to the 138-inch bay, the re-
sults are as follows:

Shear at left end, SH“M’ LMl-—%-I-J
_ 33,200—150,300 26X 138
138 2

Location of point of zero shear from left end,
X=1,918/26="73.8 in.

Max. moment due to side load only

—1,918 lbs.

o
M= M+ (Ss)z+75-=50,300—1,918X73.8
+13X73.8:= —20,450 in. 1bs.

Deflection at point of zero shear

v=ge—D[ B+ +L)+24(xz+zL+Lz)]

_73.8(73.8—138.0)["50, 300 -1, 918
~ 1,600,000 14.39 2

+§(73.8’+ 73.8 X138+ 138’]

=+1.025 in.
Secondary moment Py=-—11,085X1.025=—11,350
in. 1bs.
Total moment Mmas.=Mz+ Py=—20,450—11,350
= —31,800 in. lbs.

Applying the same method to the 93-inch bay, the
maximum bending moment is —22,520 in. lbs.

The value of the maximum deflection might be used
in computing the secondary moment instead of the
deflection at the point of zero shear, but the difference
in the result will seldom be great, and the computa-~
tions required are very tedious.

(73.8+4138.0)



THE SIXTH APPYROXIMATE METHOD

The United States Army Air Service has sometimes
used a method called that of “secondary deflections”
for computing the moments in airplane members sub-
jected to combined axial and transverse loads. The
method is outlined on pages 67 and 68 of the 1920
edition of “Structural Analysis and the Design of
Airplanes.”” In this method, the axial load being
neglected, the bending moment, M,, and deflection,
Yo, are computed at the point of zero shear in the span
under consideration. The deflection thus obtained
when multiplied by the axial load gives a secondary
moment, Py,. The magnitude of the uniformly dis-
tributed load over the entire span, which would give
a moment equal ‘to Py, is then computed, and also
the deflection due to such a load. The ratio of this

secondary deflection to the primary is used as the]

constant, r, in a geometric series where the.ultimate
deflection, when the member comes into equilibrium,
is y=y, (+r+r4+3+___. r»~1). The total moment
isthen M=M +Pyor M=M,+ M’ (1+r-|-r’+r’*+__),
M’

which becomes M= M°+1.00—r

This method was applied to the beam of Figure 2
with the following results. As far as possible the
values obtained by the fifth method were used.

In the 138-inch bay the primary moment at the
point of zero shear is —20,450 in. lbs. .

The primary deflection of this point, y,=1.025 in.

The first secondary moment is Py,= — 11,350 in. lbs.

w’, the uniformly distributed load that would give
this moment at the center of a simple supported beam
138 inch long is '

e 8M_8X11,350_ 4 o 1o per in.

[ e e

L* 138X138

r_4—77_0 1834.

The maximum moment in the 138-inch span then

becomes e 11350
_ 5
M=Mot5o—7=—20450+ 755~ 1834
= —20,450— 13,000= 34,350 in. Ibs,

For the 93-inch bay this method gives a value of
M=-—26,270 in. lbs.

This method is probably as reliable as any of the
approximate formulas, but it, too, is dependent upon
the moments at the points of support computed from
the ordinary three-moment equation, which does not
provide for the axial load. For this reason the
assumed point of maximum moment, the point of zero
shear, is not correctly located, so that the maximum
moment as obtained by this method is in error both
as to magnitude and location.

THE PRECISE METHOD

For purposes of comparison the moments at the
strut points and in the spans were computed by the

formulas developed in Part II of this report.

The first step is to determine the moments at the
points of support when the effect of the axial load is
provided for. The form_of the three-motnent equation
for this-case is . '

ar My I+ 2M, (B, L1+ﬂz L) tay My L,
_W Ll - +wa Lz

. Substituting the proper values for «, 8, v, L, etc.,
M;=46,100 {n. lbs.

The values for the maximum moments in the bays
are —43,400 in. lbs. for the 138-inch span and —8,900
in. lbs. for the 93-inch span.

The method of obtaining these values is given in
Part II of this report.

WEBB AND THORNE’S METHOD .

A method which is similar to this precise method
in its derivation but is different from it in that ap-
proximate algebraic coefficients are used in place of
the exact trigonometric functions -occurring in the
precise formulas is to be found on page 121 et seq. of
Pippard and Pritchard’s ‘“Aeroplane Structures.”
This method is accredited to Messrs. Webb and
Thorne, and it gives results that are in close agreement
with those obtained by the precise formulas so long
as the ratio of P/Q is less than about 0.85. This
method permits the computation of the strut point
moments by a three-moment equation which provides
for the effect of axial loads. The formulas for the
maximum moments in the bays also provide for such
loads. Webb and Thorne’s method has an advantage

| in that it requires no tables, but the computations

involved in its use are somewhat greater than those
necessary with the precise formulas given in Part II
when the tables are at hand. It is stated that this
method will give the strut point moments within
one-half of 1 per cent when the ratio of P/Q is less
than 0.83, while the probable error in the maximum
moment in a span is less than 5 per cent under the
same conditions.

The Webb and Thorne equation of three moments
for the case of a uniformly distributed side load and
an axial compression is

-__—_(Q b T M.(1+02Ql +2M,(1 —0.38

"I w, L (1 0.014 Q.)}

+W Ma(1+02 +2Mz(1 0.38 Q;)
-—w,L,z(l 0.014 £2 } 0

Qx

[
where P is the axial load on the spar;
xt EI
Q= I3 ;

w=the uniform load, acting upward;
L=the span length.
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The expression for the maximum moment in a span
is found from

M..,...=${(‘——”‘§M’) (1+o.2eg)———"°28‘””}

- (M — My
2wl?

The distance from the left-hand support to the point
of maximum moment is

e=L_M:—M,

2 wL

Application of this method to the structure used
for purposes of comparison gives the following results.
The moment at the intermediate strut point, M,
is found to be 45,100 in. Ibs., while the maximum
moment in the 138-inch bay is —45,620 in. lbs. For
the 93-inch bay the maximum moment is given as
—3,570 in. lbs., which is not in very good agreement
with the results from the precise equations, while the
other two values given above are a very close accord.
The ratios of P/Q are high in both of these bayvs and
the results depend on relatively small differences of
large numbers, which probably accounts for the differ-
ences found. This is particularly true in the case of
the shorter span where the difference between two
quantities is so small that a slight error in the com-
putations will change the sign of the result from posi-
tive to negative.

COMPARISON OF THE VARIOUS RESULTS

Table I gives the values of the moments at the points
of support and in the spans of the beam shown in
Figure 2 as they were computed by the various methods
discussed in the foregoing pages. The value of the
moment at the outer support is constant in each
method, as it depends on the load on the cantilever tip.
The inner end of the beam is pinned to the fuselage,
so that Mj; is assumed to be zero in each case. The
moment at the intermediate support, M, is obtained
from the three-moment equation and the moments
in the spans by one of the formulas discussed above.

TaBLE I
Method M M A Mara A
—29,300 | 433,200 | —-26, 200 0
—30,350 | +33,200 | —27,850 0
—31, 500 | 433,200 | ~28,900 0
—31,200 | 433,200 . —14, 300 0
—31,800 | 433,200 | —22 520 0
—34,350 | 433,200 | —26,270 0
—43,400 | 446,100 | —8,900 0
—45,620 | 446,100 | ~3,570 0

A comparison of the values obtained from the vari-
ous approximate formulas shows that they agree quite
well amongst themselves, but when they are compared
to the moments computed by the precise equations,
which provide for the effect of the axial load, the
approximate methods show up as unsafe in some places
and conservative in others.
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One of the sources of error involved in the use of all
of the approximate formulas is the fact that the
ordinary three-moment equation which is used in
the computation of the moments at the supports does
not provide for the effect of the axial load. It would
therefore appear that this error could be eliminated
if the precise three-moment equation were used. So
far as the moments at the points of support are con-
cerned ‘this is true, but a little study of the methods
outlined above will show that the moments in the
spans would still be in error even if the computations
were modified and made to depend on the moments
obtained by the precise three-moment equaiion. The
approximate formulas which depend on the distance
between points of inflection would give values of the
maximum moments in the spans that are less than
those already computed, as the effect of the greater
moment at the intermediate support would be to
lessen the distance between the points of inflection.
This would be undesirable in the long span of the
illustrative beam, as the maxima computed by the
approximate formulas are already on the unsafe side
in comparison with the value determined from the
precise method.

The other approximate formulas would be similarly
affected; the larger moment at the intermediate support
as computed by the precise method would give smaller
values of the maximum moments in the spans,

RESULTS OF THE STUDY OF THE APPROXI-
MATE FORMULAS

As a result of this study of various types of formulas
for providing for the effect of an axial load in combina-
tion with a lateral load on a spar, it has been concluded
that none of the approximate formnulas are satisfactory
for general use in the final design of a continuous or re-
strained spar. Johnson’s formula is easy to apply and,
as it gives reliable results for pin-ended struts with a
lateral load, it may be used in the final design of such
members.

It has been seen that the principal source of error in
applying the approximate formulas to continuous mem-
bers arises from the use of the ordinary three-moment
equation for computing the moments at the points of
support. The moments so obtained are in error, as no
provision for the effect of the axial load is made in their
computation. Attention has also been called to the
fact that the use of the values of the moments at the
supports, computed by the precise three-moment equa-
tion, in conjunction with the approximate formulas is
liable to increase the difference between the computed
and the actual maximum moments in the spans. More-
over, once the precise three-moment equation has been
solved to determine the mdments at the supports, it is
far less laborious to determine the maximum moments
in the spans by the precise method than by the approxi-
mate ones.

Webb & Thorne’s method, which is really a modified
form of the precise equations that is approximate be-
cause of the fact that the limit of the series introdured
by the secondary stresses is expressed as an algebraic
coefficient instead of a trigonometric function, will give
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satisfactory results when the axial load is not too close
to the Euler load. This method will usually give satis-
factory results for use in the design of airplane wing
spars, but its use will in general entail more arith-
metical work than the precise methods. '

The final design of continuous or restrained members
subjected to combined loading should never be made on
the basis of the results obtained from the ordinary three-

moment equation in conjunction with any of the ap-
proximate formulas unless the axial load is small or the
margin of safety is great. The approximate methods
will be sufficiently accurate for use in the preliminary
design of airplane members subjected to combined
loading, but all such members should be checked by.one
of the precise methods before being approved for use in
the final design.




PART II-THE DERIVATION OF THE PRECISE EQUATION

INTRODUCTION

In Part I of this report various approximate formu-
las for the determination of stresses due to ecombined
bending and compression were studied and compared
to each other and to the precise formulas. None of the
approximate formulas were found to bé generally
applicable, and the use of precise formulas was recom-
mended. This part of the report gives the derivation
of the precise formulas and the method of applying
them to practical design.

The chief advantages of the precise formulas are as
follows:

(1) The true bending moment at any section of the
heam can be obtained.

(2) The total deflection of any section of the heam
can be obtaineds

(3) Very few assumptions are necessary. Those
that are made are the ones generally made in develop-
ing beam and column formulas.

(4) As shown in Parts III and IV of this report, the
deflections obtained from the formulas check experi-
mental results in a very satisfactory manner, and much
better than the approximate formulas.

(5) Once the size of the beam has been determined,
the computations nécessary with the precxse formulas
are less tedious than with the approximate formulas, if
the'margin of safety is not to be unnecessarily large.

The chief disadvantages of the precise formulas are
as follows:

(1) The determination of the size members required
and the stresses involved are dependent on each other
in such a manner that the method of trial and error
must be employed. This can, however, be overcome
to a great extent by judicious approximations in the
preliminary design. Furthermore, it is felt that the
greater accuracy of the results is well worth any
increased labor of computation.

(2) Many engineers are unfamiliar with these
formulas. This is not considered sufficient reason for
neglecting them in the face of their advantages.

(3) Special complex functions and trigonometric
functions of numbers must be used. The complex
functions needed and the trigonometric functions of
numbers in the required range have been tabulated
and are given in the appendixes to this report. These
tables are arranged to obviate the necessity of trans-
forming numbers considered as angles messured in
radians to angles measured in degreds, and vice versa.
The tediousness of this operation was formerly a very
exasperating feature in the use of precise formulas.

. (4) Previously the precise formulas were suspected
because of the presence in them of trigonometric
functions. This, however, was due to a misconception

of the nature of these quantities. In the precise
formulas, as explained in the introduction to this report,
these functions have no connection whatsoever with
any angles, but are the limits of certain infinite series
that can be most conveniently expressed as trigono-
metric functions.

BASIC ASSUMPTIONS

The basic assumptions from which the precme
formulas are developed are as follows:

(I) Plane cross sections remain plane and normal to
the longitudinal fibers after bending.

(2) The intensity of stress is proportional to the
strain throughout the member, and the ratios of stress
to strain, the moduli of elasticity, are the same in
tension and compression. *

(3) Every longitudinal fiber is free to extend or
contract under stress as if separate from the other
fibers.

(4) The member is straight and homogeneous, and
the cross section of the member is uniform between
points of support.

(5) The axial load is applied in such a ‘way as to
develop no bending in the member due to eccentricities.
For a perfectly homogeneous material this requires
that the axial load be so applied as to pass through the
centroid of each cross section of the undeflected mem-
ber.

NOMENCLATURE

The nomenclature used is, with the exception of onc
or two abbreviated forms, standard in literature on
mechanics and is self-explanatory with the use of the
figures. The abbreviated forms are described in the
appropriate places in the derivation and should cause
no trouble.

The conventions used for signs are those given on
page.3 of Part I of this report.

SCOPE OF DERIVATIONS

The derivation will be given in detail for the most
common condition of loading encountered in airplane
work, i. e., a member having a uniformly distributed
lateral load in combination with an axial load causing
compression. The development of the equations .for
various other conditions of loading will be given in such
a way as to indicate the differences, so that they will
serve as an aid to the designer should he want to
derive a formula for a loading condition which is not
included in this report. For brevity, computations
involving only simple algebra, or arithmetic are omitted
from all of the derivations.

(9
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CASE L.—AXIALLY LOADED STRUT WITH UNI-
FORMLY DISTRIBUTED TRANSVERSE LOAD

Figure 3 shows a member supported at two points
and subjected to'a uniformly distributed lateral load,
an axial compression, and moments applied at.the
points of support.

/Mefffﬂ JTRUT

Fie. 3
The expression for the moment at any point is
M=Ml+(M2._M’) —~

By making the usual assumptions of the beam
theory, 1.to 3 above,

MEI

wL:c wx’

—+ =

d:t2
whence EI—-.+py M1+(M2 M) wLx

wzx?

2

Differentiating twice with respect to z this becomes

Pd?
dz? (EI d:c’) T 2

7
aM P
or x2 dz TgiM=w
If we write]% for —-o i being an abbreviation for EI
7 EIY g v

&M 1
iz +12M—

The solution of this differential equation is!
M=C, sinj—--!—C’g cos §+w]’ __________

C: and C, are constants_of integration, sin;z and cos

are the limits of infinite series in which the variable is

&Iﬁ NIH .

For purposes of computation they may be con-

sidered as functions of tite angle—j—expressed in radians.

The series _
P2 N C.7/) LB .7 ) L €7/ ) LT
S A F R T R S
and
z . =t | (=t (I/J)“
cosjlsl—— 2 + T4 76

When ¢ =0, M= M, and when z= L, M= M,, hence

Ci= Mz—wj2 M,— wjz__Mg—wf (Mi—wp?) cos L/jj
= - L . L
smv]- tan? sin 3
Cg-_— Ml—"wj2
For brevity, we shall write
D1 = MI -

wy?
D= M,—wy? }

! See Hudson, The Engineers’ Manual, par. 363, p. 58.

! See Hudson, The Engineers’ Manual, par. 11, p. 36,

The moment at any point is now

M= (D2—=Dicos Ljj

sin Ljj m—+D, cos—+w_1""- -3

To find the location of the section of maximum
moment, differentiate equation 2, equate the first
derivative to zero, and solve

dz 7 VY
tan —;~ = g"— D=Bi coiL/] """"" 4
2 Dy smT

The value of = determined from this equation must
lie between 0 ard L. Otherwise, either M; or M,
is the maximum on the strut.

The maximum moment may be found by substituting
the value from equation 4 ir equation 3 and simplifying

Mmll.=

The deflection at any point is found by substituting
the value of M from equation 2 in equation 1 and
solving, whence

1 M,—
v=pin+ (27

Ml)a: _wLz  wa?

2 T2
Dz—D,'cos-gi ‘ z
- 7 sin~j—-—D. cos—}——wjz)_--- 6
sin]—-

The first derivative of equation 6 gives the slope of
the tangent to the elastic curve at any point

1,=—(M2 M)— +w:c-~ cos=—+— sm*-)-- 7

If we have two continuous spans, as shown in Figure 4,
the slope of the tangent at the center support will be
the same for Both spans, the member being continuous
over this support.

’h

e/
r ”A. Pl -~
m‘ i iu,'ru JneN LKl
I 7 2, " £y
FiG. 4
"At Ry, 2;=L, for the left, and x2=0for the right-hand
span. Using subscripts to differentiate the symbols

for the respective spans and substituting the above
values in the expressions for slope at R,, we get

oLy . L
MMy il wily G008 Gt
LP, 2P, P, 1Py IPy -
Mg—-wlj,’-— (Ml—wlj{") cOos é'l
where C= 2
. Iy
sin T
* Co=M—wj®
.__Ms—Mz wyly €Yy «
= L,P, 2P, JePy= =7 9
My—wyjs* — (Ma—wajs®) cos £2
where C’= s 22
sin =
J2
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But at the center support i,=1;. Substituting the
values for C), C’;, and C,, equating 8 and 9, combining
terms, and simplifying, the following result will be
obtained:

(

Ly L,
ML) Jz cosec ——1

M]L |—.]1 cosec v —
e e
Nt
In 1—71 cot L]) Lz (1_ cot ?:)
g N N N/ A
+ad 7 g)z + M Lz)
Ji Jz
tan L _Ld Iﬁ—k
=’wlL(3 2j| 27[ +1L2L23 2_fz 2]2
LG LB
i J2

Multiplying this equation by 6, it becomes

.- 10

M, L|a| Iy MaLzaz w Lg
+21Mz{1 ﬁl+1 ﬂ2}+ I, 411 71
L3
Sy 11

= cosee —x—1
Gt
G
HJ—-—O”(?;‘:t 3
(tanz—é}

=3
RO

Tables of sines, cosines, and tangents of L/j and of
a, 8 and v in terms of L/j have been computed and
will be found in Appendix 3.

It often happens that moments are introduced at the
points of support of continuous members due to fittings
which are not concentric. The above formula may be
altered to provide for this condition, as follows:

~1‘%“”421&1-2(5‘ Bl ) +2M+z(%ﬁ2>
l

M;L, @z WiL3 v,
5 a1, T

Where

WL v,
4, T 11a

In this equation M_; and M,; are the moments an
infinitesimal distance to the left and right of the point
of support, respectively. Equation 1la contains an
extra unknown which necessitates another equation
for a solution. This is derived from the relation be-
tween M_, and M, M4, being equal to M_; plus or
minus the eccentric moment M,. Care must be taken
with the sign of M,. It should be considered positive
if it increases the moment from M_; to M4, as one goes
from left to right at the point of support.

When a truss deflects, the panel points do not neces-
sarily lie on a straight line. Equation 11 may be
modified to provide for differences in elevation of the
supports, as follows:

22223—25{—3

L101+2M2{ 81 +I 52}+M:;IL:¢!2

_6E(y,— yz),ﬁE(ya—.lz) WiLdv, , WiL?y,
==L Tt L, T & t 4, u

If the deflected positions of the points of support
lic on straight line,

WY Ya—Us
L L

and the deflection terms drop out.

For airplane trusses y;, ¥, and y; may be computed
according to the usual methods for figuring truss de-
flection, but with the assumption that the deflection
is due to the elongation of the wires alone, i. e., elon-
gations of the spars and struts may be neglected. The
deflections are usually small and may generally he
omitted from the computations, though their effects
should always be considered, especially for spars con-
tinuous over the center section where the deflected

positions of the points of support are obviously not in

a straight line.

CASE Ia.—AXIALLY LOADED STRUT WITH NO
TRANSVERSE LOAD

The precise formulas above may be modified for
use with struts subjected to axial loads and end mo-
ments, but no lateral load, by making w=0.

The position of the section of maximumm moment
may then be found from

z Mz—'M1 COSs — ,
tan 5= ———————— 4 eeeo o 12

J M, sin=
and Mo = M’z ............... 13

€08 =

J

. M;— M, cos
y=b| s (20
sin =

------------- 14

.z z
in =—M, cos =
sin T M e85

If one end is hinged, as often happens in the case of
struts used on airplane chasses, the moment at any

point is
sin =

z being measured from the hinged end.
The location of the section of maximum moment is

L= e 16
M
anx "‘"LL """""""" 17
sin =
_1| s Meseg o 18
Y=P| L L
sin ]
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CASE Ib.—PIN ENDED STRUT WITH AXIAL
LOAD AND ©UNIFORMLY DISTRIBUTED
TRANSVERSE LOAD

If both ends of a member subjected to an axial load
and a uniformly distributed transverse load ate hinged,
the section of maximum moment ocecurs at mid span.

L 1 _ .2( _ g)
M gz, =wj? (1-— L)—‘UJ] 1—sec %) 19
J

Johnson’s approximate formula
M,

1 1pPL2
10E1
may be derived from formula 19 if the algebraic series
represented by the secant be substituted for the secant
term. The resulting form is
M,
M=1"%rD
48E1
which reduces to Johnson’s formula if 1/10 be sub-
stituted for 5/48.

CASE I.—AXTALLY LOADED STRUT WITH CON.
CENTRATED TRANSVERSE LOAD

M =

Figure 5 shows a span subjected to a concentrated
lateral load, an axial compression and moments applied
at each support. The method of derivation of the
formulas for the moment in the span and for the three-
moment equation is analogous to that used in the pre-
ceding case. The determination of the constants of
integration is somewhat more difficult for the concen-

trated than for the uniformly distributed load, but’

even that is simple if the procedure outlined below is
followed. .
y | %,
Y — T
to— X —-'
a AL
W
¢
Fi1G. 5

Since it 1s impossible to write a single equation for
the moment at any point in the span for this type of
loading, one equation will be written for the segment
to the left of the load and another for the segment to
the right. The fact that two equations must be
handled instead of one appears, at first glance, to
render the solution much more difficult, but this will
not be found to be the case. ‘

The expression for the moment at any point between
the left support and the load is

ML=M1+(AIEL—M>3:— m —Py._. 2la

Between the load and the right support we have

MR=M1 +(M22M1)x_ W(I}I—G) z

21b

As in Case I, take the second derivative of equation
21, whence "
&M _ _ Pdy
dz? = dz?
or
aM P
Iz T M=0 '
The solution for this equation, when applied to the
segment to the left of the load is

My=0C; sin .:,..{. Cicos L.

5 22a
And for the segment to the right of the load
Me =C; sin;f- +C, cosf- ________ 22b

where j=-\/ EPZ ; and Cy, C3, Cy, and C, are constants of

integration.
From equations 21 and 22, we find that
tion is L
. M:—Ml) W(L~a) Y e &
P!/L—Mx+( I )~ — %~ Cisin 7

-_fhe deflec-

and

Pyn=Mx+(M’ZM'>z - W”{"’)x +W(z—a)

. T z
—C; sln-Jr -~C cos—j- ..........

By differentiating equations 23, we find that the
slope is

_Mi—M, W(L—a) C
=5~ 4

Piy cos -}-i—%sin—:?—__ 24a

L J Jj
and
. _Mys—M, W(L—a) Cs z
Pig A T +w - 7 €08
C . =z .
+j sin 7 -mmmemememmin 24b

From the conditions of the structure, when z=0, M
=M;; whenz=q, y.= yg and i = ig; and when z=1L,

M=M;. These conditions are sufficient to determine
the four constants of integration, which will be found
to be .
. L
c Ma—M;cos > . a L ; a)
1= — +WJsmj cotj cot )
sin—+ .
J
Ca=M,
M;— M, cos é ¢« L
Cy= T + Wjisin Teots
. J J
sin ]

Co=My—Wjsin




© maximum moment lies to the right of the load and its
- location and magnitude should bé computed from
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Differentiating equation 22 to find the section of
maximum moment,

%‘:gf‘ cos %—5—’ sin ;—:.==0
z G
tan 3 =G

Dividing equation 22 by cos ;—F, we get

My, =0y tan 2+,

cos =
J

Mmu. Cl
So ——=C.(— +C,
cos T C’>

— C’:’+C'z’) z_C ;a7
or Mm.x.—(——-cl cos 5=, VC2+CA..__ 2Ba
Similarly, for the right-hand segment,

m.,—(c"+c‘) cos 2= &1 C4 JCATCa.._ 25b

1t will be noted that for a smgle concentrated load
the section of maximum moment may come either to
the left or right of the load, depending on the position
of the load and the magnitude of the moments at the
supports. It may therefore be necessary to compute|

the values of tan f for both segments to ascertain in |

which the section of maximum moment is located. If
z is less than a, as found for the left-hand segment, use
the formula for that segment when computing the
maximum moment. If z is greater than a when
computed from the values of C, and C; the section of

Cy and Ci. It is conceivable that the shape of the
moment curves to the left and right of the load will
be such that the point of zero slope of each curve will
lie on the opposite side of the load from the curve itself.
Since the equation for the location of the section of
maximum moment is in reality simply a means of
determmmg the point when the slope of the moment
curve is zero, it will be found that for such a condition
the value of z determined from C, and C, will be greater
than @, while that determined from C; and C, will be
less. This indicates that the maximum moment will
be at the section where the load is applied and may be
computed by substituting a for z; or that the concen-
trated load does not cause a maximum in the span, in
which case either M, or M; is the maximum.

If the same procedure is followed for a continuous
span having concentrated side loads as was followed
in the case with the uniformly distributed side load,.
the following equation of three moments results:

MIII:1¢|+2M2 {LIl_fx_*_I%ﬁz}_*_MaLzaz

I,
sin al . Lz—dz
_6Wu? Jl —a |8 AT I _Ia—a; |yg
S sin —LJ L I sin 2 L
J1 J3

In this equation « and 8 have the same values as in
the case of the uniformly distributed load and may be

found from the tables. It.will be noted that the left-
hand side of the above three-moment equation is
identical to that developed for the uniform load; such
differences as there are being on the right-hand side
in connection with the terms which provide fur the
load. Thisequation may therefore be treated in exactly
the same way as the three-moment equation in Case I
to allow for the effect of an eccentric moment at one
of the supports or for the deflection of the supports.

If a combined uniform and concentrated loading
were applied to a continuous strut the three-moment
equation could -be arranged to provide for this condi~
tion by including on the right-hand side of the equation
terms sufficient to provide for each load, leaving the
left-hand side of the equation unaltered. .

Formulas similar to those obtained in Case I may
be obtained for pin-ended struts, or for struts in which
one end is hinged and one restrained by substituting
M= M,=0 or M,=0 in the equations.

For a pin-ended column with a concentrated lateral
load in the middle of the span, the moment at any
point is

M=Cysin = ... 27
where C;=—_n—7‘%
2 cos %

L
2 cos 2_1

The deflection at mid span is

i Lo 2 £]
T ] w— ------ 30

This formula and an approximate formula derived
from it are used in Part III of this report to compute
the mid-span deflection of the specimens which were
tested to show whether the theoretical formulas would

agree with practical results For further discussion,
see Part III. ' -

CASE III.—AXIALLY LOADED STRUT -WITH
UNIFORMLY VARYING LATERAL LOAD

P 2
2 ] . -
¥ v L] L] L] L3 L L] L] "
] }
. L
FiG. 6

Figure 6 shows a strut subjected to an axial com-
pression, a lateral load varying uniformly from zero
at one end to W at the other and to moments applied
at each support. The derivation of the formulas
for this condition of loading is practically identical
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in every step to the derivation for a uniform load.
The development will therefore be given in a briefer
form.

The moment at any point on the span is

—M\ WLz Wz :
M=Ml+(M’L M‘)& =s—t%r —Py---- 31

The second derivative of this equation is

oM dy_We @M, P Vo
T2 tPaa=1 O 4z TEIMTL

The solution for this equation is
.z V.
M=C,sin —J~+Cz cos = T e 32

Where j=\/EFI , €, and C; are constants of integra-

tion.

When z = 0, M= M, and whenz =L, M= M,, from
which it will be found that

| b~

Mg—szz—Mx cos >

Ay

Cl=
sin 3‘
Co=M,

Equation 32 does not offer a simple equation for
finding the location of the section of maximum moment,
as its first derivative, when equated to zero, gives

.z z_z.f
C, sin i C, cos i~
which may be converted into the following expression
in terms of Cj, Cy, and W33,

z_C, (C24+C E’js
tanF=g ——_ 33
i Ci C,CWj+Cay LAH(CP+CP) — (W)

It will be observed that two values of z will be found
from the equation, according to the sign used for the
radical term in the denominator. One value of z will
probably not lie on the span, hence may be neglected.

The magnitude of the maximum moment is found by
substituting the value of z obtained from equation 33
in equation 32 and solving.

The defiection at any point may be found from

1 M;—M WLz Wb
y=’P[M*+( I )"“—6 A

- sin%—C. cos?—'i 7 ] """""""" 34

And the slope at any point is

_ l[M,—M, WL Wz ¢1 ¢
P L 6 2L j %7
Cz . X sz . 35

+5 sy |

The three-moment equation is found in the same
way as for the uniformly distributed load and may be
written

MLy Ly, , L, M;Lyoy _El}-’ljlz _
P +2M2{7; 51+I—2 Bz}'l'T ==7, {2(8;—1)]

If the load varies from _W_ at the left support to zerv
at the right, the equation is similar and may be written

MLy Ly, Ly Mooy WiLvji?
o +2Mz{7;ﬁx+?;ﬁz}+—j;————‘—‘ll [ay—1]

WoLajs2.
+—ZI:’” DC ) P 37

CASE 1V.—GENERAL CASE

If, instead of a concentrated load W, a load of w dz
at a variable distance z from the origin had been used
in Case II, the following general form of the three-
moment equation would have been obtained:

MLy 2M ;L8 +2M 12182 +1‘_{3L20‘2
E111 E]Il EzI? Eﬁll
L si pa
_5 J_I lyd
_—Pl Sin!# ) w)a%
0 n
Ls sin Li—z Ls '
6 Y I ook
-}-T,—2 1 " wedz
o sin—
J2

6(y—y2) , 6(ys—y2)
o T L 38

In general, the material will be the same throughout
the length of the strut, so that E, may be made equal to
E;, and the equation becomes

M|L101+2M-1L131 ' 2M+2L232+M3Lzaz
Il 11 a Ia Ig
= sin %
=6l'z : Ji_ 21 wdz
I sin-If-l
0 h
Ly f, La—xg
5]‘22 sin jz Lr—:tn
+5 ——t = fundz
b sinTL’ L,
Ja

The three-moment equations developed in Cases 1,
II, and III may be obtained from equation 38 or 38a
by integrating and simplifying the resultant expressions.
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CASE V.—STRUT SUBJECTED TO UNIFORMLY
DISTRIBUTED LATERAL LOAD AND AN AXIAL
TENSION

The foregoing formujas have all been derived for
cases where the axial load caused compression in the
member. This is the more important case.from a
structural standpoint, since an axial compression
increases the pending on the strut and accelerates its
failure, whereas an axial tension tends to straighten
the member out and retard its failure.

For this reason it is more conservative in the latter
case to compute the stresses due to the axial and trans-
verse loads independently and to add the results.

The formulas will be given for the case of a uni-
formly distributed transverse load in combination with

.an axial tension, so that a designer may have a basis for

deriving the equations for other loading conditions if
he should desire to do so.

The same procedure may be used as in the case of
axial compression, except that — P should be substituted
for P. The equation for the moment at any point on
the span, instead of equation I, page 10, becomes

_ M,—M ) z—wLz wx
m=m+ (g oLz 02 1 Py
and the second derivative is
d;M P M w
Z3

The solution of this differential equation is
M=C, sinh ?—}-Cz cosh ?——wg’, where j=\/E—II,I

So
L
M+ wj— (M+wjs?) cosh 7

sinh £’
J
Ct= M+ wj?

It will be noted that the circular functions occurring
in the former cases have been replaced by hyperbolic
functions and that some of the signs have been changed.
These changes are brought about by the-change in
sign of the second term in the differential equation and
will require careful attention when deriving formulas
for other types of loading.

The expression for the maximum moment is similar
to that for axial compression.

The location of the section is at z, where

D, cosh g—f— D,

tanh ==
J Dy sinh é
J
and
anx. = Dl T ——10]’
cosh 7

Where . A
D, = M, + wj?
D;.= M, + wjp?
The deflection at any point is
y=}—, (Cl sinh;—F +C; coshf;-T —w? — My — M’zM‘ z
wlz_wat
2 2

The slope at any point ig
1=—<C' h +C’m h—z—M' M’+1£—I—‘-—.wx>

The three-moment equation is similar to that for
axial compression, when «, 8, and v are replaced by

au, Bn, and vh, where
6 (1— % cosech %)
N2
(7)
3 (]~ coth = - 1)
@]
3 (— — tanh )
(21)

+ 2Mz{ le + %5“}*‘

= W1 L7 L wy Lg?
~aI, Yot ~4I, M

‘ay =

M L awn Lx api M Ln ans

I

Values of an, —fn, and vu are tabulated in the
Appendix of this report.

Values of the hyperbolic sines, cosmes, or tangents
may be found in almost any fairly complete set of -
mathematical tables..

Terms may be added to prov1de for the deﬂectlon of
the supports in this case just as well as in the case of
axial compression.

For other conditions of loading the development of
the equations will be left to the designer, with the
warning that particular attention must be paid to
signs, especlally when obtaining a solution for the
differential equatxon

Should the case arise where a spar is subjected to
compression in one span and tension in the next, the
precise three-moment equation may be altered to
provide for it'by using the coefficients based on circular
functions with the terms relating to the span under
compression and the coefficients based on the hyper-
bolic functions for those relating to the span in tension.
The moments and stresses within the spans are then
found by use of the formulas for axial compression or
tension as the case may be. This condition seldom
occurs in practice, although it may be found in an
airplane wing spar due to the action of the drag
truss stresses, which may oppose and overcome those
from the lift truss in one bay but not in the next.
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CRITICAL POINTS IN THE PRECISE
FORMULAS

FORMULA FOR MOMENT IN ANY POINT IN
THE SPAN

Each of the precise formulas is difficult to solve for
certain values of L/j. In some cases the formula will

take an indeterminate form such as z 01‘?—);' in others the

functions vary so rapidly that reliable results can not
be obtained with ordinary straight-line interpolation.

For instance, if we investigate the general expression
for the bending moment at any point in a span under
combined bending and compression, i. e.,

L
Dz—D10087 z z
M= Y sin7+D1COS‘J—-+’wj2
sinJ‘-

we immediately see that the term in parentheses
becomes infinite when sin Lfj is zero. Since sin Lfj
= 0 when L/j = 0, =, 2=, etc., it is apparent that these
points are critical ones when applving the formulas.
It is possible, however, to compute the moment for
values of L/j near the critical point, plot the results,
and obtain a value of the moment at the critical point
from the curve drawn through the points. Figure
7 gives the results of solving the equation for several
values of Lfj near = and, shows that the bending mo-
ment when Lfj is = is about —42,100 in. lbs. in this
case.
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FORMULA FOR MAXIMUM MOMENT IN A SPAN

If we consider the formula for obtaining the maxi-
mum moment in a span, we see that it becomes indeter-
minate when D;=0. That is,

anx,= *2!; +’II)J2
CcOS —~
J

becomes Mmax, = %+wjf when D;=0, since tan ?— as
found from
D,— Dy cos —Ii
is @
D; sin =
J

r w

and cos §=O. It is possible to dodge this com-

s

plication by ohserving that £ _Z and using the general
Jj 2

expression for moment at any point in the span, which
becomes ’

M=

DzL L g
sin =
J
For points near D;=0 the tangent is varying very

rapidly and it is impossible to obtain the values of :13

and cos? with sufficient precision by ordinary methods

of interpolation.
The simplest method of attack in such a case is to
interchange D, and D, in the formulas for Mma:, In

| this case z will be measured from the right-hand end

of the span; that is, the interchange of D) and D, is
equivalent to turning the beam end for end. Unless
L/j is near = in value, this dodge will alter the value of
z/j sufficiently to permit a solution without recourse
to any special formulas.

A second method depends on the fact that

——1——=sec A=+/tan? A+41

cos 4
Applying this relationship to the expression for the
maximum moment in the span, we have

D,

_ +ujt=Dry/ tan? §+1+-wjz

COs =+
J

Mumx,:

LR it
Substituting for tan %"., its value,

Dz"‘ D] cos %

D, sin é
J
and simplifying, the expression becomes

anx,

7 '\/D,2+D22—2D, Dy cos £ w2
sin = J

which does not involve the quantity z/j. By usibg
this formula it is possible to find the maximum moment
without solving for z/7, but the location of this moment
is not found, and it is sometimes difficult to tell which




_figure. It is obvious from this figure that the curve
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of the two square roots of the expression under the
radical sign should be used.

A third method, which is approximate but sufficiently
accurate when z/j is nearly equal to #/2, depends on
neglecting the 1 under the radical in the expression

1 =+tan? A+1 and assuming__l_ —tan A. This
cos A cos 4

is merely another way of stating the assumption that
cos A=cot A, which is as valid for values of A close
to #/2 as the similar assumption that sin A=tan A for
values, of A close to zero. If the above assumption is
made, the formula for the maximum moment in the
span becomes

Mpae. =D\ tan % +wj?

It can also be seen from the symmetry of the loading
that P,=P,, Ly=L,, ete., so that in this case the
moment at the center support will become infinite when

1 —Lfj cot Ljj _

Ifjcot Ljj—1-"
or )
1—L/j cot L{j=L/j cot L/j—1
whence
L/j cot L{j=1
and

L/j=tan Lfj

This condition is fulfilled when: L/j is approximately

Ll

| 1

Substituting the expression for tan z/j in this

=, ol 3 ]

formula it becomes

Dy— D, cos -L—

Mass. = _—-_L—]_ +wj2

sin =

Zi= Iz 425,

J

The first two methods are simply alge- N

braic transformations of the equations and .

give correct results for all values of z/j. d

The third method involves an error of less

than 1 per cent in the first term of the

expresison for Mm.:, when z/j is between 1.45

and 1.70.

THREE-MOMENT EQUATION PR

The three-moment equation also has critical

points and for certain values of L/j appears

to give infinite results.

If we write the three-moment equation in a

/V

form that is readily solvable for M, i. e,

/f

wlLla'Yl_szLﬁa'Yﬂ Mleal_Mstaz

M;\-": 411 ! 411 Il 12

' Ma

2{111: ﬂx+%ﬂz}

A 177y m.’ fpm

A wirratson //1 s

We find that M; appears to become infinite

when Lj/j=r=, since a, B, and y are each g 43 I 7A | ]

[ gal 25

infinite. As a matter of fact this expression L1A2
really becomes %: and may be evaluated in

the ordinary manner for solving indeterminate forms
by differentiation.

It is apparent from the above equation for M; that
the right-hand side becomes infinite when the denomi-
nator is zero. If we investigate this condition, substi-
tuting the trigonometric functions for 8, we find that the
denominator becomes zero when )

L, L,
11—
J1 oot 3+ o PILI
-I.—" cot é— TPL
2 J2

Figure 8 is a curve showing the variation of moment
at the intermediate point of support for different
values of L/fj, for the span and loading shown on the

of M, is continuous through L/j=w.

Yoo P
4.49, as tan 49 4.45.  The moment at the center
support will #iot be infinite when L/j=0, although tan
0=0, as 0 cot O is not equal to 1.

When the beam is continuous over more than two
spans, the problem of solving for the moments at the

support when L/j in one span is equal to « becomes
more involved and has not been attempted by the
writers of this report.

The critical points encountered in the use of the
precise formulas for a member under combined bending
and compression are apparently critical only in that
they require-special consideration when the formulas
are being solved. Similar points can be found for the
other loading conditions, bu.tlthev will not be enumer-
ated here. The knowledge of their existence should
be sufficient to put the designer on his guard when
applying the formulas at points where the trigonometric
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functions are changing rapidly or at points where any
of the terms in the formulas approach zero or infinity.

No difficulty will be encountered when applying these
formulas so long as L/j in any span is not equal to or
greater than =. When L/ is greater than = the value
of the maximum moment in any span if found from
the value of z/j should be checked by the other ex-
pression for the maximum moment, which is based on
L/j only. There are at the present time no known
test data to indicate whether or not these formulas
are in reasonable agreement with actual results for
loads and spans having L/j greater than =. It is
therefore recommended that spar sizes to be used in
airplane wings be so designed that L/j in every span
will be less than =.

METHOD OF PROVIDING FOR VARIATION IN
THE MOMENT OF INERTIA

In an airplane wing cellule the drag truss bays are
generally shorter than those in the lift truss, there
usually being two or three drag bays to one lift truss
bay. The stresses in the drag or antidrag wires
produce axial loads in the spars, so that the value of P
can not bhe taken as constant throughout a lift truss
bay. In addition to this variation in the axial load
the spar sections themselves are often varied in the
different drag bays, so that the moment of inertia is
not constant. The precise formulas developed in the
foregoing pages are therefore not accurate for these
conditions, as they assume a constant axial load and
constant moment of inertia between supports. The
following method might be used for approximating
the moments on the spars under such circumstances.

L’ Lll Lml"
P' Il PII Iﬂ Pm 1 \
[ W P PER INCH /7
L .
[ £ "1
FiG. 9

Figurc 9 shows one bay of a lift truss of length Ly,
which is subdivided by the drag truss into three bays
of length L', L', and L’’’. The axial loads are P,
P, and P’"’ and the cross section will be assumed to
change at each drag truss panel point so that the
moments of inertia are I', I'’, and I'’’,

Let
p =P'L"+ P/ULY P
1 § 74 +LII+LIII
and
7 1'L'+1"L”+I”'L“'
t LI+LII+LIII

and compute j; in the usual way. This value of j
should be used in the three-moment equation when
computing M,, M,, etc. With M, and M, known,

- compute the moments at the drag truss panel points,

i. e, M’', M"', for the above value of J.  Using these

values of M\, M’, M'’, and M, as the end moments,
M, and M., consider each drag bay as a separate span
and apply formulas 4 and 5, using the value of j ebtained
from the P and I for the bay being considered, not
the weighted values used above. The quantities
obtained in this way, while admittedly approxima-
tions, will be somewhat more conservative than those
computed for the average load and average moment
of inertia.

NOTES ON THE USE OF THE PRECISE
FORMULAS

It is recommended that at least four significant
figures be used in all computations involving the
precise formulas. In preliminary investigations or
for the purpose of obtaining a rough check on a spar,
three figures will be sufficient but, since the final result
of several of these formulas depends on small differ-
ences between large quantities, three significant
figures will often give misleading results. This fact
should be borne in mind and the number of significant
figures necessary to give the required precision in the
results should be used. This matter is especially
important when the value of L/ is near =, as the func-
tions a, B, and v are all changing rapidly in that range.

Special care must be taken to use the proper signs
throughout the computations or serious errors will
result. This is particularly true in the case of the signs
of the terms for loads and deflections. The conven-
tions for signs are given on page 3 of Part I of this
report. '

In applying the precise formulas to design, it is
necessary to decide upon a size of member before the
final values of the bending moments can be obtained.
This makes the process of design a matter of successive
trials, but by first computing the bending moments
and axial loads without allowing for secondary stresses
and using those moments and loads suitably modified
by the judgment of the designer on the first trial, the
number of trials needed to obtain a satisfactory design
should not be excessive.

In discussions of the precise methods of computing
stresses due to combined loadings in this report and
by other authors (as Cowley and Levy in Acronautics
in Theory and Experiment, etc.), failure is usually
assumed to mean failute due to elastic instability or
“buckling.” Usually, before such failure would
occur in practice, the member would have failed by
rupture of the material due to excessive unit -stresses,
and statements regarding the criteria for failure must
be read with these facts in mind. The criteria for
failure in buckling implicitly assume that the material
has a constant finite modulus of elasticity and an in-
finite proportional limit and ultimate allowable stress.
Of course, no engineering material has such properties,
but the precise formulas and resulting criteria for
buckling failure are nevertheless very useful in deter-
mining the loads under which failure by rupture of the
material is Kkely to occur.




APPENDIX 1|

Table A gives values of sines, cosines, and tangents
of angles in terms of radians between 0.00 and 3.50
radians. This table may be used in the same way
as any table of trigonometric functions, the argument
being in terms of radians instead of degrees and min-

utes. Attention is called to the fact that the signa| ..

of the functions are given in the tables, and care should
be taken to empley the correct sign when using the
values in the precise equations.

Table B gives values of a, 8, and v in terms of radians
between 0 and 2x. It should be noted that the
increment to the argument is not constant but that it
varies in different parts of the table, being least where
the rate of change of «, 8, and v is greatest, so that
care is required when an interpolation is made.

The functions given in Tables C are the values of
a, 8, and v to be used when the axial load causes
tension in the spar. They are based on the hyperbolic
functions and are differentiated from the values for
use with axial compressive loads by the subseript h,
being written ay, By, and vp.

Tables of hypetrbolic series, cosines, and tangents
are not included in this set, as they may be found in
numerous collections of mathematical tables and, as
the argument is practically always expressed in radians,
these tables are Pmmediately useful.

TaBLE A.—Natural sines, cosines, and tangents of
angles in radians -

Xin | gox 1% | SineX | CosineX | Tangent X
ecima. ine 0sine angen
radians in degrees
0. 00 0. 000 0. 00000 1. 00000 0. 00000
0.01 0.573 0. 01000 0. 99995 0. 01000
0.02 1. 146 0. 02000 0. 99980 0. 02000
0.03 1.719 0, 03000 0. 99955 0. 03000
0.04 2,202 0. 03999 0. 99920 0. 04002
0.05 2. 865 0. 04098 0. 99875 0. 05004
0.06 3.438 0. 05996 0. 99820 0. 06007
0.07 4.011 0. 06994 0.99755 0. 07012
0.08 4. 584 0. 07991 2 0. 08017
0,09 5.157 0. 08988 0. 99595 0. 09024
0.10 5. 730 0. 09983 0. 89500 0. 10034
0. 11 6.303 0. 10978 0. 99396 0. 11045
0.12 6. 875 0.11971 0. 99281 0. 12057
0.13 7.448 0. 12963 0. 99156 0. 13073
0. 14 8. 021 0. 13954 0. 99022 0. 14092
0.15 8. 594 0. 14044 0. 98877 0. 15114
0.16 9. 167 0. 15932 0.98723 0. 16138
0.17 9.740 0. 16918 0. 98558 0. 17165
0.18 10. 313 0. 17903 0.98384 0. 18197
0. 19 10. 886 0. 18886 0. 98200 0. 19232
0.20 11.459 0. 19867 0. 88007 0.20271
0.21 12. 032 0. 20846 0. 97803 0. 21314
0.22 12. 605 0. 21823 0. 97590 0. 22362
0.23 13.178 0.22798 0. 97367 0. 23414
0.24 13. 751 0. 23770 0.97134 0. 24472
0.25 14. 324 0. 24740 0. 96891 0. 25534
0,26 14. 897 0. 25708 0. 96639 0. 26602
0.27 15.470 0. 26673 0.96377 0. 27676
0.28 18. 43 0. 27636 0.95106 0. 28756
0.28 16. 616 0. 28595 0. 95824 0. 29841

TABLE A.—Natural sines, cosines, and langenis of

angles in radians—Continued

X in Xin

radians  decimals 8ine X Cosine X |- Tangent X

in dégrees

0.30 17.189 0. 20552 0. 95534 309034
0.31 17.762 0. 30506 0.95233 0. 32032
0.32 18.3%5 0. 31457 0. 84924 0. 33138
0.33 18. 907 0. 32404 0. 94 0. 34
0.34 19. 481 0. 33349 0. 94275 0. 35374
0.35 20, 054 0. 34200 0. 93937 0. 36503
0.36 20. 626 0. 35227 Q. 93500 0. 37640
0.37 21. 199 0. 36162 0.93233 0. 38786
0,38 21,772 0. 37002 0. 92866 0. 39041
0.39 22. 345 0. 38019 0. 92491 0. 41105
0.40 22.918 0. 38042 0. 92106 0, 42270
0. 41 23. 481 0. 39861 0.91712 0. 43463
0. 42 24. 064 0. 40776 0. 91309 0. 44657
0.43 24, 637 0. 41887 0. 90897 0. 45862
0. 44 25.210 0. 42594 0. 90475 0. 47078
0. 45 25, 783 0. 43497 0. 90045 0. 48308
0.46 26. 356 0. 44395 0. 89605 0. 49545
0.47 26. 929 0. 45289 0. 891567 50796
0.48 27. 502 0. 44178 0. 88699 0. 52061
0. 49 28,075 0. 47063 0. 88233 0. 53339
0.5 28 648 0. 47943 0.87758 0. 54630
0. 51 29, 221 0. 48318 0.87274 0. 55938 -
0. 52 20. 704 0. 40688 0. 86782 0. 57256
0.53 30. 367 0. 50553 0. 86281 0. 58501
0. 54 30. 940 0. 51414 0. 85771 0. 50043 -
0.55 31. 513 0. 52269 0. 86252 0. 61310
Q. 56 32. 086 0, 53119 0. 84726 0. 62695
0.57 32.658 0. 84190 0. 64097
0.58 33. 232 0. 54802 0. 83646 0. 656517
0.50 33..805 0. 55636 0. 83094 0. 66955
0. 60 34.377 0. 56464 0. 82534 0. 68414
0. 81 34. 950 0, 57287 Q. 819656 0. 69892
0.62 35. 623 0. 58104 0. 81388 0. 71381
0.63 38. 096 0. 58014 80803 0. 72011
0. 64 36. 669 0. 59720 0. 80210 0. 74454
0.65 37. 242 0. 60519 Q. 79608 0. 76021
0.68 37.815 0. 61312 0. 78999 0. 77611
0.67 38, 388 0. 62099 0. 78382 0. 70226
0.68 38, 961 0. 62879 0. 77757 0. 80866
Q.69 39, 534 0. 63654 0.77125 0.82533
0.70 40. 107 0. 64422 0. 76484 0. 84229
07 40. 680 0. 85183 0. 75836 0. 85953
0.72 41. 253 0. 65938 0. 75181 0. 87707
0.73 41,825 0. 66687 0. 74517 0. 89402 .
0.74 42. 399 0. 67429 0. 7384 0. 91309
0.75 42,972 0. 68164 Q. 73160 0. 93160
0.76 545 0. 68892 0. 72484 0. 95045
0.77 44.118 0. 60614 0. 71791 0. 96967
0.78 44, 601 0. 70328 0. 71091 0. 98928
0.78 45. 264 0. 71035 0. 70385 1. 00924
0.80 45, 837 0.71738 0. 69671 1. 02064
0.81 46. 410 0. 72429 0. 8950 1. 05046
0,82 . 983 0.73115 0. 68222 1.07171
0.83 47, 556 0. 73783 0. 67488 1.00343
0.84 48.128 0. 74464 0. 66746 1.11563
0.85 48.701 0.75128 0. 65998 1. 13834
0.86 49. 274 0. 75784 0. 65244 1. 16156
0.87 49. 847 0. 76433 0. 64483 1. 18533
0.88 50. 420 0.77074 0. 63715 1. 20067
0.89 50. 993 0. 77707 0. 62041 1. 23460
0.90 51. 566 0. 78333 0. 62161 1. 26018
0.91 52.139 0. 78050 0.61375 1. 28637
0.92 52.712 0. 79560 0. 60582 1.31326
0.93 53. 285 Q. 80162 0. 59783 1.
0.4 53.858 0. 80756 0. 58979 1.36023
0.95 54.431 0. 81342 0. 58168 1. 39838
0.96 55. 004 0.81919 0. 57352 1. 42836
0.97 85. 577 0. 82489 0. 1. 45920
0.98 56. 160 0. 83050 0. 55702 1. 49096
0.99 56.723 0. 83603 0. 54869 1. 52368

(19)
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TaBLE A.—Natural sines, cosines, and tangents of TasLeE A.—Natural sines, cosines, and tangents of
angles in radians—Continued angles in radians—Continued
Xin | 4 Xin Xin | X0
radians| decimals Sine X Cosine X Tangent X radians decimals Sine X Cosine X Tangent X
in degrees in degrees
1.00 57.296 | 0.84147 0. 1. 55741 180 | 103.132 | 0.97385 | —0.22721 —4.28627
1.01 57.869 | 0.84683 0.53186 1. 59221 1:81 | 103.705 | 0.97152 | —0.23693 —4.10050
1.02 58.442 | 0.85211 0.52337 1.62813 182 | 104278 | 0.96011 | —0.24664 —3.92937
1.03 50.015 | 0.85730 0. 51482 1. 86525 1.83 | 104.851 | 0.96659 | —0.25631 —3.77118
104 50.588 | 0.86240 0. 50622 1. 70361 1.84 | 105424 | 0.96308 | —0.26507 —3. 62450
1.05 60.161 | 0.86742 0.40757 1.74332 1.85 | 105997 | 0.96127 | —0.27559 —3. 48306
1.06 60.733 | 0.87236 0. 48887 1.78442 1.86 | 106,570 | 0.95847 | —0.28518 —3. 36083
1.07 61.306 | 0.87720 0.48012 1. 82703 187 | 107.143 | 0.95557 | —0.29476 —3.24188
1.08 61.879 | 0.88196 0.47133 1.87122 1.88 | 107.716. [ 0.95257 § —O0,30430 —3,13039
109 62.452 | 0.88663 0. 46249 1.91710 1.89 | 108,289 | 0.94949 | —0.31381 —3.02566
1.10 63.025 | 0.80121 0. 45360 1.96476 190 | 108.862 | 0.94630 | —0.32329 ~2,02710
L1 63.508 | 089570 0. 44466 2.01434 1.91 109.435 | 0.04302 | —0.33274 —2.83414
L12 64.171 | 0.90010 0. 43568 2.06595 1.92 | 110,008 | 0.939%4 | —0.34215 —2.74630
113 64.744 | 0.90441 0. 42666 2.11075 193 | 110581 | 093618 | —0.35153 —2. 66316
114 65.317 | 0.90863 0.41759 2. 17588 194 | 1iL154 | 0.93262 | —0.36087 —2. 58433
115 65.800 | 0.91276 0. 2. 23449 195 | 111727 | 0.92806 | —0.37018 —2, 50047
118 66.463 | 0.01680 0.30934 2 29580 1.96 | 112,300 | 092521 | —0.37046 —2. 43828
117 67.036 | 0.92075 0.39015 2.35008 197 | 112.873 | 0.92137 | —0.38869 —2.37049
118 67.609 | 0.92461 0. 38092 242726 198 | 113.446 | 0.91744 | —0.30788 —2.30582
1.19 68.182 7 0.37166 249790 1.99 | 114019 | 0.91330 | —0,40703 —2, 24408
1.20 68.755 | 0.93204 0.3636 2.57215 200 | 114502 | 000930 | —0.41615 —2.18504
121 60.328 | 0.93562 0.35302 2. 65033 2.01 115.165 —0.42522 —2, 12853
1.22 60.901 | 0.93010 0.34365 2. 73276 2.02 | 115738 | 0.90079 —0. 43425 —2,07437
1.23 70.474 | 0.94249 0.33424 2.81982 203 | 116.310 | 089641 —0, 44323 —2,02242
124 7047 | 0.94578 0. 32480 29114 204 | 11683 | 0.80103 | —0.45218 ~1,97252
1.25 71.620 | 0.94808 0.31532 3.00057 205 | 117.45 | 0.88736 | —0.46107 —1.92456
1.28 72.193 | 0.95209 0. 30582 3.11328 208 | 11 0.88270 | ~—0.46093 —1.87841
; 127 72.768 | 0.95510 0.20628 3.22363 207 | 118,602 | 0.87707 | —0.47873 —1.833
1.28 73.339 | 0.95802 0. 28672 3.34135 208 | 119.175 | 0.87313 —0. 48748 —1.79112
1.29 73.912 | 096084 0.27712 3.46721 200 | 119.748 | 0.86822 | —0.49619 —1.74977
1.30 74.485 | 0.96356 0. 26750 3. 60210 210 | 120.321 | 0.86318 | —0.50485 —1.70984
131 75.057 | 096618 0. 25785 3.74708 2.11 120.804 | 0.85812 | —0.51345 —-1.67127
i 1.32 75.630 { 0.96872 0. 24818 3.90335 212 | 121467 | 0.85204 | —0.52200 —1.63305
1.33 76.203 | 0.97115 0. 23848 4.071231 213 | 122040 | 0.84768 | ~0.53051 —1.59785
134 76.776 | 0.97348 0.22875 4. 25562 214 | 122613 | 0.84233 | —0.53806 —1. 56287
135 77.349 | 0:97572 0.21901 4.45523 215 | 123.186 | 083600 | —0.54736 ~1. 52898
1.36 77.922 | 0.97786 0. 20024 4.67344 216 | 123.759 | 0.8138 | =0 —1. 49610
1.37 78.405 | 0.97991 0.10945 217 | 124.332 | 0.82579 | —0.56390 —1.46419
138 068 | 0.98185 0.18964 5.17744 218 | 124.905 | 0.82000 | —0.57222 —1.43321
139 79.641 | 098370 0.17981 5. 47089 219 | 125.478 | 0.81434 | —0.58039 —1.40310
v 1.40 80.214 | 0.98545 0. 16997 5. 79788 220 | 126,051 | 0.80849 | —0.58850 —1.37382
' 1.41 80.787 | 0.98710 0.16010 6.16537 2,21 | 126.624 | 0.80258 | -0, 59656 —1.34534
: 1.42 81360 | 0. 0.15023 6.58110 2,22 | 127.197 | 0.79657 | ~0.60455 —1.31761
1.43 81.933 | 0.99010 0.1 7.05546 223 | 127770 | 0.70048 | ~-0.61249 -1
1.44 82.506 | 0.99146 0.13042 7. 60182 224 | 128343 | 0.78432 | ~—0.62036 —1.26429
1.45 83.079 | 0.90271 0.12050 8. 23810 22 | 128916 | 077807 | —0.62818 —1.23863
1 1.46 83.652 | 0.99387 0.11057 8.98362 2.2 | 120.489 | 0.77175 | —0.63503 —1.21360
! 147 84.225 | 0.90492 0.10063 9.88740 227 | 130,061 | 0.76538 | —0.64361 —1.18016
1.48 84.708 | 0.99588 0. 00067 10. 98338 2,28 | 130,634 | 0.75888 | ~0,65124 —1. 16531
j 149 85.371 | 0.99674 0.08071 12.34991 229 | 13.207 | 0.75232 | =0.65879 -1.14109
! 150 85.944 | 0.99749 0.07074 14.10142 2,30 | 131780 | 0.74571 | —0.66628 —1.11921 :
1.5 8.517 | 0.99815 0. 06076 16.42811 2,31 | 132353 | 0.73%02 | —0.67370 —1.00694
1.52 87.090 | 0.99871 0.05077 19. 6696 232 | 132926 | 0.73224 | ~—0.68106 —1.07514
1.53 87.863 | 0.99917 0.04079 24. 4986 233 | 133.409 | 0.72538 | —0.68834 —1.05381
; 1.54 88.236 | 0.99953 0.03079 32,4513 2.3¢ | 134072 | 071847 | —0.60558 —1.03292
i 1.55 88.808 | 0.99978 . 48,0803 2.35 | 134645 | 0.71147 | —0.70271 +1,01247
1 1.56 80.381 | 0.99004 { +0.01080 92. 6238 236 | 135218 | 0.70441 | =0.70070 —0. 99242
i 1.57 20.054 | 1.00000 | +0.00080 | 1,275.04 237 | 135791 | 0.69728 | —0.71680 —0.97276
: 1.38 90.527 | 0.99096 | —0 —108. 661 238 | 136.364 | 0.69007 | ~0.72374 —0.95349
1.59 91.100 | 0.99082 | —0.01920 | ~—b52 0676 239 | 136937 | 0.68281 | -0 —0, 93457
1.60 91673 | 0.90057 | —0.02020 | ~—34.2320 240 | 137.510 | 0.67547 | —0.73739 ~0.91602
! 1.61 92.246 | 0,90023 | —0.03020 | —25.4950 241 | 138.083 | 0.66806 | —O0.74411 —0.89779
1.62 92.819 | 0.99870 | —0.04919 | —20.3073 242 | 138.656 | 0.66058 | —0.75076 —0.87989
1.63 93.392 | 0.90825 | —0.05017 | —16.8712 243 | 139.229 | 0.65304 | ~—0.75733 —0. 86230
164 0.99760 | —0.06915 | —14.4270 244 | 130,802 | 0.64544 | —0.76383 —0. 84502
165 94.538 | 0.99687 | —0.07012 | —12.59926 245 | 140.375 | 0.63777 | —0.77023 —0.82801
| 1.68 95111 | 0.99602 | —0.08008 | ~—11.18059 246 | 140.948 | 0.63003 | —0.77657 ~0.81130
1.67 05,684 | 0.99503 | —0.09904 & —10.04724 2.47 | 141521 | 0.62224 | ~0.78283 -
168 96.257 | 0.90404 | —0.10898 —9,12076 248 | 142.094 | 0.61438 | —0.78%0L —0.77866
- 169 96,830 | 0.99200 | —0.11892 —8.34925 2.49 | 142.667 | 0.60646 | —0.70512 —0. 76272
{ 1.70 97.403 | 0.90167 | --0.12885 -17.8 2.5 | 143,240 | 0.59847 | —0.80114 —0.74703
171 97.976 | 0.90033 |. —0.13878 ~7.1372 251 | 143.812 | 0.59043 | —0.80709 —0.73155
172 98.540 | 0.98389 | —0.14865 —6. 65245 2.52 | 144,385 | 0.58233 | —0.81295 —0.71632
173 90.122 | 0.98736 | -—0.16854 —6. 22809 2.5 | 144.958 | 0.57417 —0. 81874 —0.70129
: L74 90.695 | 0.98572 | —0.16840 —5.85353 254 | 145531 | 0.56506 | —0.82444 —0. 68647
175 0.98390 | —0.17825 —B5.52037 2.55 | 146,104 | 0.55769 | —0.83005 —0. 67186
176 | 100.841 | 0.98215 | —0.1 —5. 22200 2.56 | 146.677 | 0.54936 | —0.83559 —0. 65744
1.77 | 10L.414 | 0.98023 | -—0.10789 —4, 95340 2.57 | 147.250 | 0.54007 | —0.84104 —0. 64322
1.78 | 10.987 | 0.97819 | —0.20768 ~4,71010 2.58 | 147.823 | 0.53253 | —0.84641 —0.62917
179 | 102.55 | 0.97 —0.21748 —4. 48866 259 | 148.396 | 0.52405 | —0.85169 —0.61530
1
i
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TaBLE A.—Natural sines, cosines, and tangenis of [ TABLE A.—Natural sines, cosines, and langenis of
angles in radians—Continued angles in radians—Continued
Xin Xin
ra}éit&s decimals | Sine X Cosine X | Tangent X radiaps| Sine X | Cosine X | Tangent X
in degrees
3.16 | —0.01841 | —0.90983 0. 01841
2.60 148,969 | 0.51550 —0. 85680 ~0. 80160 3.17 | —0.02840 ! —0.99960 0. 02841
2.61 149.542 | 0.50601 —0. 86200 —0. 58806 3.18 | —0.03840 | —0.99028 0. 03843
2.62 150. 115 0. 49827 ~0. 86703 —0. 57468 3.19 | —0.04839 | —0.90883 0. 04845
2.63 150. 688 0. 48957 —0,87198 —0. 56145
2.64 151. 261 0.48082 | - —0.87682 ~0. 54837 3.20 | —0.05838 | —0.90830 0.05848
2.65 151. 834 0. 47204 —0.88158 —0. 53544 3.21 | —0.06836 | —0.99768 0. 06852
2.66 152. 407 0.46319 —0.88626 —0. 52264 3.22 | —0.07833 | —0.99603 0. 07857
2,67 152. 480 0.45431 —0. 89084 —0. 50097 3.23 | —0.08820 | —0.90609
2.68 153, 553 0. 44538 —0.89534 —0. 49744 3.24 | —0.00825 | —0.99516 0. 09873
2.69 154,126 0. 43640 —0.89975 —0. 48502 3.25 | —0.10820 | —0. 90413 0.10883
3.26 | —0.11814 | —0.99300 0. 11806
2.70 154, 699 0.42738 —0. 90407 —0.47273 3.27 | —0.12806 | —0.90177 0. 12012
2,71 155,272 | 0.41831 —0. 90830 —0. 46055 3.28 | —0.13797 | —0.99044 0. 13930
2.72 155. 845 0. 40022 —~0. 91244 —0. 44849 3.29 | —0.14787 | —0. 98901 0. 14051
2.73 156. 418 0. 40007 —~0.91647 —0. 43653
2,74 156. 990 0. 39089 —0.92043 —0. 42467 3.30 | —0.15774 | —0.98748 0.15075
2,75 157. 563 0. 38167 —0. 92430 —0.41292 3.31 | ~0.16761 | —0, 98585 0. 17002
2.76 158. 136 0.37240 —0. 92807 —0.40126 3.32 | —0.17746 | —0.98412 0. 18033
2.77 158. 709 0.36310 —0.93175 —0. 38070 3.33 | —0.18720 | —0.98230 0. 19067
2.78 150. 282 0.35377 —0. 93533 —0.37822 3.34 | —0.19711 | —0.9803 0. 20105
2.79 159. 855 0. 34440 —0.93882 | ' —0.36684 3.35 | —0.20600 | ~0.97838 0.21148
3.36 | —0.21668 | —0.97624 0. 22195
2.80 160. 428 0.33499 —0. 94222 ~0. 35553 3.37 | ~0.22643 | —0.97403 0. 23246
2.81 161. 001 0.32555 —0. 94553 ~0. 34431 3.38 | ~0.23616 | —0.97172 0.24303
2,82 161, 574 0.31608 —0. 04873 ~0, 33318 3.39 | —0.24587 | —0.96930 0. 25365
2.83 162. 147 0. 30658 —0.95184 ~0.32209
2.84 162. 720 0. 29704 —0. 95487 ~0.31109 3.40 | —0.25555 | —0.96680 0. 26431
2.85 163. 293 0.28748 —0.95779 —0. 30014 3.41 | —0.26520 | —0.96419 0. 27504
2.86 163. 866 0.27788 —0. 96062 —0. 28928 3.42 | ~0.27482 | —0,96149 0. 28583
2.87 164. 439 0. 26827 —0.96335 —0. 27847 3.43 | —0.2843 | —0.95870 0. 29668
2,88 165.012 0. 25862 —0.96508 ~0. 26773 3.44 | —0.20400 | ~0.95581 0.30759
2.89 165. 584 0. 24895 —0. 96852 —0. 25704 3.45 | —0.30364¢ | —0.95282 0. 31857
3.46 | —0.31308 | —0.94074 0. 32062
2.90 168. 158 0.23025 —0.97096 —0. 24641 3.47 | —0.3225¢ | —0. 9465 0. 34074
2.91 166. 731 0. 22952 —0.97330 —0. 23583 3.48 | —0.33190 | —0.94328 0.35195
2.92 167. 304 0.21979 —0.97555 —0.225 3.49 | —0.34141 | —0.93992 0.36322
2.93 167.877 0. 21002 —0.97770 —0. 21481 3.50 | —0.35077 | —0.93646 0. 37459
2.94 168. 450 0. 20022 —~0.97975 —0. 20437
2.95 169. 023 0. 19042 ~0. 88170 —0. 19397
b | e pae ) Ctewe) tus
. . 16 . -0 0.
B | | s wm) o
. .314 0. 15101 —0.988 —-0.1
Tables of values of a, 8, and ¥ where
v | ma | pen | em | b
3.01 . . 13121 -G —0. ; -
3.02 173.033 | 0.12129 —0. 99262 —0.12219 o= (MIJJ._Q
3.03 173. 606 0.11136 —0.99378 —0.11206 (L/7)3
3.04 1;4. ;79 3. 11)8132 -0. %% —g (1’8132
3.05 174.752 . 09146 ~0. —0.091 . .
3.06 | 175325 | 008150 | —0.99667 —0.08177 g=301= Lj cot Ljj)
3.07 175. 898 0.07153 ~0. 99744 —0.07171 = wn:
3.08 l;ﬁ. 471 3. 85155 ~0. 99810 —gA 36167
3.09 177. 044 . 05156 —0. 99867 —0.05164 . .
. 3(tan L/2j— L/2j)
3.10 177.617 0.04150 —0.99913 ~—0, 04162 7=—~(L“/_2')3—
3.1 178. 190 0.03159 —0. 99950 —0. 03161 J
3.12 gg. 763 g. gzlgg -0. %7 —g. 3213 : ) ting bot 8 and v i
313 . 336 . 011 -0. 3 ~0.011 i xistin ctween a an 18
g‘ 1 {Q 229 8’ %};46? —(l)'w "8’ 88};2(1) A general relation existing , B, Y
.15 . 482 | —0. -0. . .
a+28—3=v(L/25)*

Table of «, 8, and v functions

Ljj S a Aa . B AB r Ay Lij
0 1. 0000 1. 0000 1. 0000 0
0.5 1. 6300 1.0171 1. 0256 0.5
1.00 1. 1304 1.0737 1. 3113 1.00
0. 0151 0. 0085 0.0128

1.05 1. 1455 1. 0822 1. 1241 1.05
0. 0162 0. 0090 0.0138

110 1. 1617 1.0912 1.1378 110
0.0175 0. 0097 0.0148

115 1.1792 1. 1009 1.1527 1.15
0.0187 0.0105 0.0159

1.20 1. 1979 1. 1114 1. 1686 1.20
0. 0201 0.0111 0. 0170

1.25 1. 2180 1. 1225 1. 1856 1.25
0. 0216 0.0120 0. 0183

1.30 1. 2396 1. 1345 1. 2039 1.30
0.0232 0.0128 0.0196

1.35 1. 2628 1. 1473 1. 2235 1.35
0. 0250 0. 0137 0. 0210

1.40 1. 2878 1. 1610 1. 2445 1.40
0. 0268 0. 0147 0.0226

1.45 1.3146 11757 1. 2671 1.45
0.0288 | 0.0158 0.0243

1.50 1.3434 1. 1915 1. 2914 1. 50
0.0310 0. 0169 0. 0260

1.55 1. 3744 1.2084 1.3174 1.55
0. 0334 0. 0182 0. 0281
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TasLe B.—Continued
Table of a, B, and v funcltions—Continued .

Lff « Ax 8 Ap v Ay Ll
1,60 1.4078 1.2268 1.3455 1.60
0.0361 . 0.0196 0.0303
1,65 1,4439 . . 1. 2462 1.3758 1.65
1 0.0391 0.0211 0.0327
1.70 1,4830 1.2673 1.4085 1.70
0.0422 0.0228 0.0353
1.76 1. 5252 1.2901 1. 4438 1.78
0.0458 0.0246 0.0383
1.80 1. 5710 1.3147 1.4821 1.80
0.0498 0. 0267 0.0416
1.85 1.6208 1.3414 i 1,5237 1.85
0.0542 0.0290 0.0452
1.9 1.6750 1.3704 1, 5689 1.9
0.0593 0.0316 0.0403
1.95 1.7343 1.4020 1.6182 1.95
0.0650 0.0345 0. 0540
2.00 1.7993 1.4365 1.6722 2.00
0.0713 0.0377 0.0593
2.08 1,8706 1.4742 1,7315 2.05
0.0788 Q.0415 0.0852 .
32.10 1,0484 1.5157 1.7967 2.10
0.0872 0. 0459 0.0722
2.18 2.0366 1.5616 1.8689 2.15
0. 0970 0. 0508 0. 0803
220 21336 1.6124 1. 9492 220
0. 1085 0. 0566 0. 0895 . #er
2.25 2. 2421 1. 6690 3 2, 0387 2.25
0.1220 0. 0835 0. 1005
2.30 2,3641 1.7325 2. 1302 2.30
0. 1380 0.0718 0. 1137
2.35 2, 5021 1. 8041 22529 235
0. 1574 0. 0813 0.1293
2.4 2. 8505 1.8854 ’ 2 3822 2.40
0.0872 0. 0450 0.0718
2,425 2. 7467 1.9304 2.4538 2,425
0. 0937 0. 0482 0. 0769
2.45 28404 1.9786 2. 5307 2.45
0. 1008 Q. 0518 0. 0827
2.475 2.0413 20304 2. 6134 2.475
0. 1089 0. 0560 0. 0893
2.5 3. 0502 2. 0864 . 2707 2,50
0. 1180 0. 0604 0. 0968
2 525 3. 1682 -2, 1468 I 27903 2. 525
0. 1282 © 0.0656 0. 1050
2585 3. 2064 2.2124 2. 9043 2.85
. 0. 1397 0.0714 0.4143
2576 3. 4361 2 2838 3. 0186 2,575
0.1529 0.0779 0. 1249 :
2680 3. 5890 23617 3.1435 2.60
0. 1680 - 0. 0856 0.1372
2625 3.7570 2.4473 3. 2807 2,625
o 0. 1852 0. 0942 0.1513
2.65 3.9422 2.5415 3. 4320 2.65
0. 2054 0. 1043 0.1676
2.675 4.1476 26458 3. 5096 2.675
0. 2200 . 0.1161 0. 1867 :
2.70 4,3766 2.7619 3.7863 270 -
0. 2568 0. 1208 0. 2003
2,726 4,6334 2.8917 - 3.9056 2.725
0. 2899 0. 1469 0. 2361 .
278 4.9233 3.0386 4. 2317 275
0.3297 0. 1666 0. 2685
2.775 5. 2530 3.2052 4, 5002 2.775
0.3785 0. 1912 0. 3080
2.80 5, 68315 3. 3984 4. 8082 2,80
) 0. 4387 0. 2210 0. 3568
2.826 6. 0702 3.6174 5. 1650 2,825
0. 5163 : 0. 2600 ) 0. 4202
2.85 6, 5865 3.87T14 .. 5. 5862 2.85
0. 6094 0. 3065 0. 4948
2.875 7.1959 R 4. 1839 6. 0800 2.875
0.7384 0.3711 0. 5008
29 7.9343 4, 5550 6. 6708 2.90
. 0.9006 0.4567 0.7386
2925 8, 8439 . 5.0117 7.4184 2925
1. 1476 0. 5758 0.9319
2.95 9. 9915 5. 5875 8.3503 2.95
. : 1, 4930 0. 7484 L2113
2.976 11. 4845 6.3359 9.5616 2.975
2.0212 1.0127 1. 6402
3.00 13, 5057 +7.3486 +11. 2013 3.00
: 1.0238 0. 5127 0. 8304
3.01 +14. 5295 +7.8613 +12.0317 3.01
11924 0. 5870 0. 9671
302 -15. 7219 +8.4584 +12. 9988 3.02
) 1. 4063 0. 7040 1. 1405
3.03 | - 4171282 +9.1623 +14,1303 3.03.
1.6834 0. 8425 1. 3651
3.04 +18, 8117 -+10. 0049 +4-15. 5044 3.04
2.0513 |- 1. 0265 1.6633
3.06 +20. 8620 +11.0314 +17. 1677 3.05
2. 5647 1.2782 2.0711
3.06 +23.4178 +12.3096 +-19. 2388 3.08
3.2684 1. 6350 2 6408
3.07 +26. 6860 +13. 9446 +21. 8886 307
4.3301 2. 1659 3.5103
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TasLe B—Continued
Table of a, B, and v functions—Continued

Lfj « Aa I] AB 5 Ay L/f
3.08 +31.0160 +16. 1105 425, 3080 3.08
6.0084 3.0051 4.8712
3.09 +37. 0244 +10. 1156 +30. 2701 3.09
8.8080 4.4503 7.2137
8.10 +485.9234 +423. 5659 +37. 4830 3.10
14. 5332 7.2675 11. 7808
.1 +60. 4566 +30.8334 449, 2647 3.1
27.9956 13,9087 22, 6930
3.12 +88. 4522 +44.8321 +71.9577 3.12
76. 2065 38. 1401 B1. 8440
3.13 +164. 7487 +82.9812 +133.8017 3.13
1034, 4142 517.2088 838. 4545
3.14 | -+1199.1620 +600. 1000 4972, 2562 314
@ [+ 2] [ o]
3.15 —227, 1668 —112. 9747 —183.8716 3.15
123. 4002 61,7065 100, 6325
316 —103, 7576 ~51. 2692 —83. 8391 3.16
36.5220 18. 2614 20. 6049
3.17 —87. 2348 ~—33. 0068 ~54. 23432 317
17. 5035 i 8.7527 14.1885 .
3.18 —49.7313 —24. 2542 ~40, 0458 3.18
10.2712 5.1365 8.3263
3.1 —39. 4600 —19. 1176 ~31.7195 3.19
6.7537 3.3778 5. 4750
3.20 ~32. 7063 —15. 7398 —26. 2445 3.20
4.7788 2.3003 3.8742
3.21 —27.9278 —13.3495 —22,3703 3.21
3. 5503 1.7807 28858
3.22 —24. 3683 —11, 5688 ~19. 4845 3.22
27541 1.3779 2.2330
123 —21.6142 —10. 1909 ~17.2515 323
2.1040 1.0980 1.7700
3.4 —19. 4202 —9. 0920 —15. 4725 LU
1.7890 0.8955 1. 4508
3.28 ~17. 6312 —8.1975 —14.0218 3.25
1. 4866 0.7443 1.2067
828 16, 1447 —7.4532 —12.8161 3.28
1.2548 0.6284 1.0178
.77 ~14.8800 —6. 8248 ~11.7083 327
1.0733 0. 5376 0.8707
3.28 ~13. 8166 —6.2872 —10.9276 3.28
0.9285 0. 4652 0.7533
329 -12. 8881 —5.8219 —10.1743 3,20
0.8111 0. 4086 0. 68581
3.30 ~12.0770 —5.4154 ~—9. 6162 3.30
4.8521 2.3368 8.7784
340 —~7. 448 ~2.0787 —5.7378 3.40
] 2.0479 1.0354 1. 6681
3,50 -8.3769 —2.0433 ~4, 0697 3.50
1.1477 . 0.5861 0.9389
360 ~4. 2202 -1 4572 —3.1308 3.60
0.7302 0.3785 0.6016
3.70 =3, 4090 ~1.0787 -2.5292 3.70
0. 5029 0. 2659 0.4179
3.80 —2, 0961 —0.8128 —2.1113 3.80
0.3647 0.1981 0.3070
3.90 —2.6314 —0. 6147 ~1.8043 3.90
0.2744 0. 1544 . 0.2349
4.00 -2, 3570 —0. 4603 -1, 5604 4.00
0.2116 0.1248 0.1854
4.10 -2, 1454 —0. 3355 ~1,3840 410
0.1662 0.1038 0.1408
420 —1.9792 -0.2317 -1.2342 4.2
0.1317 0.0887 0.1237
4.30 —1.8475 -0.1430 —1.1105 4.30
0.1046 0.0778 0.1036
440 —~1,7420 —0.0652 ~1.0069 4.40
0.0826 0.0696 0.0881
4.50 —1,6603 +40.0044 . —~0.90188 , | 4.50
0.0641 . 0.0638 o841 0.0757 40
4.60 ~1. 5062 +0.0682 |- X X
0.0810 0.1169 0.1235
4.80 -1, 5152 4-0.1851 ~0.7196 4.80
5.00 0.0238 0.1124 0.0z 0.0062 5.00
2 —1.4014 . 2075 . .
5.25 42 0.0568 :z 0.1520 0,529 0.0938 5.25
2 ~1. . 4495 —0. .
55 . 0.1964 +o.6470 0.1975 04563 0.0733 55
2 ~1.7446 . 64 5 :
515 2,294 0.4808 +o.0%7 0.3277 0.3 0.0589 575
. -2, . 974 =0. 2
1.5111 0.8268 0.0482
8.0 —3.7455 +1.8015 —0.3402 6.0
25.3412 12.7331 0.0404
6.25 —20. 0867 +14.5346 —0.3088 6.25
0 © —0.3040 0.0048 2
2r Foo =00 5 x
o) © 0.0295
6.5 +4. 1490 —2.0242 —0.2745 6.5
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TasLe C

Values of ap, B, and vy for use in the precise three-
moment equation for beams subjected to a uniformly
distributed load and on axial tension:

L L)
6 (l—j cosech 3
)
J
((- coth ——1)
&
e 3 (———tanh 21.[)
G
23

It will be noted that neither 7/2 nor = is a critical
point for values of ap, By, Or 7h.

These values are derived directly from the tables
compiled by Mr. Arthur Berry in his paper, “The
Calculation of Stresses in Airplane Wing Spars,’’ pub-
lished in the Transactions of the Royal Aeronautical

Society, 1919, the argument X in these tables being
twice the argument 8 used by Berry.

Lij an Aan B ABy " Ayn Lji

0.00 | 1.0000 1. 0000 1. 0000 0. 00
0. 0284 0.0163 0. 0244

0.50 | 0.9716 0. 9837 0.9756 0. 50
0.0771 0. 0446 0. 0664

100 | 0.8945 0.9391 0. 9092 1.00
0. 0097 0. 0057 0. 0083

1.05 | 0.8848 0.9334 0. 9009 1.05
0. 0100 0. 0058 0. 0087

1.10 } 0.8748 0.9276 0. 8922 L10
0. 0100 0. 0060 0. 0089

1.15 | 0.8647 0. 9216 0. 8833 L15
0.0105 0. 0061 0. 0090

1.20 | 0.8542 0.9155 0.8743 1,20
0. 0106 0. 0062 0. 0092

1.26 | 0.8436 0.9083 0. 8651 .25
0.0108 0. 0065 0. 0004

1.30 | 0.8328 0. 9028 0. 8557 130
0.0110 0. 0065 0. 0096

1.35 | 0.8218 0. 8963 0. 8461 L35
0.0111 0. 0066 + | 0.0097

1.40 | 0.8107 0. 8307 0.8364 1,40
0.0113 0. 0067 0. 0098

1.45 | 0.7994 0. 8830 0. 8266 145
0.0113 0. 0068 Q. 0099

TasLe C—Continued

Ljj an | Aan | Bu | MK | m Anw | Ljf

1.50 | 0.788} 0. 8762 0. 8167 1. 50
0.0114 0. 0068 0. 0100

1.55 | 0.7767 0.8694 Q. 8067 1. 55
0.0115 0. 0069 0. 0100

1.60 { 0.7652 0. 8625 0. 7067 1.60
0.0115 0. 0070 0. 0100

1.65 | 0.7537 0.8555 Y 0. 7867 1.65
0.0118 0.0070 0. 0101

170 | 0.7421 0.8485 0.7766 1.70
0.0118 0. 0070 0.0102

175 | 0.7305 0.8415 0. 7664 175
0.0116 0. 0071 . 0. 0104

1.80 | 0.7189 0. 8344 ‘| 0.7560 1.80
0.0118 0. 0071 0.0103

185 0.7073 0.8273 0. 7457 1.85
0.0115 0. 0071 .| 0.0102

1.90 | 0.6958 0. 8202 0. 7355 1.90
0.0115 0. 0071 0.0102

1.95 | 0.6843 0.8131 0.7253 1.95
0.0115 0. 0071 0. 0101

2.00 | 0.6728 0. 8060 0.7152 2.00
0. 0114 0. 0071 0. 0101

2.05 | 0.6614 0. 7989 0. 7051 2.05
0.0113 0. 0071 0. 0101

2.10 | 0. 8501 0.7918 0. 6950 2.10
0.0112 0. 0071 0. 0100

2.15 | 0. 6389 0. 7847 0. 6850 2,15
0.0111 0. 0070 0. 0100

2.20 | 0.6278 0.7777 0. 6750 2.2
.01 0. 0070 0. 0098

2.25 | 0.6167 0.7707 0. 6652 2.25
0.0109 0. 0070 0. 0097

2.30 [ 0.6058 0. 7637 0. 6553 2.30
0.0108 0. 0069 0. 0098

2.35 | 0.5950 0.7568 0. 6457 2.35
’ 0. 0107 0. 0069 0. 0097

2.40 | 0. 5843 0. 7499 0. 6360 2. 40
0. 0106 0. 0069 0. 0095

2.45 | 0.5737 0. 7430 0. 6265 2.45
0. 0104 0. 0068 0. 0095

2.50 | 0.5633 0.7362 0.6170 2. 50
0. 0103 0. 0067 0. 0093

2.55 | 0.5530 0.7205- 0. 6077 2. 55
0. 0101 . 0. 00687 0. 0092

2.60 | 0. 5429 0.7228 . 0. 5985 2,60
0. 0100 0. 0066 0. 0092

2.65 | 0.5329 0.7162 0. 5893 2.65
0. 0099 0. 0065 0. 0090

2,70 { 0.5230 0. 7087 0. 5803 2.70
0.0097 | | 0. 0065 0. 0088

2.75 | 0.5133 0.7032 0.5715 275
0. 0096 0. 0085 0. 0088

2.80 | 0. 5037 0. 6967 0. 5627 2.80
0. 0094 0. 0064 0. 0085

2.85 | 0.4943 0. 6903 0. 5542 2.85
0. 0092 0. 0063 0. 0085

2.90 | 0.4851 0. 6840 0. 5457 2.9
0. 0091 0. 0062 0. 0085

2,95 | 0.4760 0.6778 0. 5372 2.95
0. 0090 0. 0062 0. 0084

3.00 | 0.4670 0.6716 0. 5288 3.00
0. 0087 0. 0061 0. 0083

3.05 | 0.4583 0. 6655 0. 5205 3.05
0. 0087 0. 0060 0. 0080

3.10 | 0. 4496 0. 6595 0.5125 3.10
0. 0085 0. 0059 0. 0080

3.15 | 0. 4411 0. 8536 0. 5045 3.15
: 0. 0083 0. 0060 0.0077

3.20 | 0.4328 0. 6476 0. 4968

3.20




